These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 805118)
21. Spectral and kinetic characterization of 7,8-diaminopelargonic acid synthase from Mycobacterium tuberculosis. Bhor VM; Dev S; Vasanthakumar GR; Surolia A IUBMB Life; 2006 Apr; 58(4):225-33. PubMed ID: 16754301 [TBL] [Abstract][Full Text] [Related]
22. Broad substrate stereospecificity of the Mycobacterium tuberculosis 7-keto-8-aminopelargonic acid synthase: Spectroscopic and kinetic studies. Bhor VM; Dev S; Vasanthakumar GR; Kumar P; Sinha S; Surolia A J Biol Chem; 2006 Sep; 281(35):25076-88. PubMed ID: 16769720 [TBL] [Abstract][Full Text] [Related]
23. Microbiological biosynthesis of biotin. Izumi Y; Tani Y; Ogata K Methods Enzymol; 1979; 62():326-38. PubMed ID: 108512 [No Abstract] [Full Text] [Related]
24. Affinity recovery of lentivirus by diaminopelargonic acid mediated desthiobiotin labelling. Chen R; Folarin N; Ho VH; McNally D; Darling D; Farzaneh F; Slater NK J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Jul; 878(22):1939-45. PubMed ID: 20599176 [TBL] [Abstract][Full Text] [Related]
25. Conserved and nonconserved residues in the substrate binding site of 7,8-diaminopelargonic acid synthase from Escherichia coli are essential for catalysis. Sandmark J; Eliot AC; Famm K; Schneider G; Kirsch JF Biochemistry; 2004 Feb; 43(5):1213-22. PubMed ID: 14756557 [TBL] [Abstract][Full Text] [Related]
26. Antagonism of the inhibitory action of aminosalicylic acid on Mycobacterium tuberculosis by methionine, biotin and certain fatty acids, amino acids, and purines. HEDGECOCK LW J Bacteriol; 1956 Dec; 72(6):839-46. PubMed ID: 13398375 [No Abstract] [Full Text] [Related]
27. The dual-specific active site of 7,8-diaminopelargonic acid synthase and the effect of the R391A mutation. Eliot AC; Sandmark J; Schneider G; Kirsch JF Biochemistry; 2002 Oct; 41(42):12582-9. PubMed ID: 12379100 [TBL] [Abstract][Full Text] [Related]
28. A microplate fluorescence assay for DAPA aminotransferase by detection of the vicinal diamine 7,8-diaminopelargonic acid. Mann S; Eveleigh L; Lequin O; Ploux O Anal Biochem; 2013 Jan; 432(2):90-6. PubMed ID: 23068037 [TBL] [Abstract][Full Text] [Related]
29. Biochemical studies on acidomycin. III. Antibiotin activity of acidomycin and its related compounds. KAWASHIMA M; MIYAKE A; HEMMI T; FUJII S Pharm Bull; 1956 Feb; 4(1):53-5. PubMed ID: 13335457 [No Abstract] [Full Text] [Related]
30. Cloning and characterization of the Bacillus sphaericus genes controlling the bioconversion of pimelate into dethiobiotin. Gloeckler R; Ohsawa I; Speck D; Ledoux C; Bernard S; Zinsius M; Villeval D; Kisou T; Kamogawa K; Lemoine Y Gene; 1990 Mar; 87(1):63-70. PubMed ID: 2110099 [TBL] [Abstract][Full Text] [Related]
31. Formation of a biotin precursor, pimelic acid, in yeasts from C18 fatty acids. Ohsugi M; Miyauchi K; Tachibana K; Nakao S J Nutr Sci Vitaminol (Tokyo); 1988 Aug; 34(4):343-52. PubMed ID: 3236079 [TBL] [Abstract][Full Text] [Related]
32. In vitro activity of C-8-methoxy fluoroquinolones against mycobacteria when combined with anti-tuberculosis agents. Lu T; Drlica K J Antimicrob Chemother; 2003 Dec; 52(6):1025-8. PubMed ID: 14613961 [TBL] [Abstract][Full Text] [Related]
33. Biosynthesis of biotin in microorganisms. VII. Effect of glucose on vitamer synthesis by thermophiles. Papiska HR; Lichstein HC J Bacteriol; 1968 Mar; 95(3):1173. PubMed ID: 5643053 [No Abstract] [Full Text] [Related]
34. Biotin synthesis in plants. The first committed step of the pathway is catalyzed by a cytosolic 7-keto-8-aminopelargonic acid synthase. Pinon V; Ravanel S; Douce R; Alban C Plant Physiol; 2005 Dec; 139(4):1666-76. PubMed ID: 16299174 [TBL] [Abstract][Full Text] [Related]
35. Studies on the biosynthesis of biotin. Production of biotin and biotin-like compounds by a pseudomonad. Rose AH; Ilahi M; Kelemen MV Biochem J; 1965 Aug; 96(2):319-27. PubMed ID: 4953779 [TBL] [Abstract][Full Text] [Related]
36. Identification of a novel class of small compounds with anti-tuberculosis activity by in silico structure-based drug screening. Taira J; Morita K; Kawashima S; Umei T; Baba H; Maruoka T; Komatsu H; Sakamoto H; Sacchettini JC; Aoki S J Antibiot (Tokyo); 2017 Nov; 70(11):1057-1064. PubMed ID: 28951604 [TBL] [Abstract][Full Text] [Related]
37. Total synthesis of amiclenomycin, an inhibitor of biotin biosynthesis. Mann S; Carillon S; Breyne O; Marquet A Chemistry; 2002 Jan; 8(2):439-50. PubMed ID: 11843156 [TBL] [Abstract][Full Text] [Related]
38. Combined action of streptomycin and chloramphenicol with plant antibiotics against tubercle bacilli. I. Streptomycin and chloramphenicol with cepharanthine. II. Streptomycin and allicin. GUPTA KC; VISWANATHAN R Antibiot Chemother (Northfield); 1955 Jan; 5(1):24-7. PubMed ID: 24543344 [No Abstract] [Full Text] [Related]
39. Synthesis of biotin-vitamers from pimelic acid and coenzyme A by cell-free extracts of various bacteria. Izumi Y; Morita H; Sato K; Tani Y; Ogata K Biochim Biophys Acta; 1972 Mar; 264(1):210-3. PubMed ID: 4623286 [No Abstract] [Full Text] [Related]