These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8051193)

  • 1. A study of the wall shear rate distribution near the end-to-end anastomosis of a rigid graft and a compliant artery.
    Rhee K; Tarbell JM
    J Biomech; 1994 Mar; 27(3):329-38. PubMed ID: 8051193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compliance and diameter mismatch affect the wall shear rate distribution near an end-to-end anastomosis.
    Weston MW; Rhee K; Tarbell JM
    J Biomech; 1996 Feb; 29(2):187-98. PubMed ID: 8849812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational simulation of flow in the end-to-end anastomosis of a rigid graft and a compliant artery.
    Qiu Y; Tarbell JM
    ASAIO J; 1996; 42(5):M702-9. PubMed ID: 8944971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of radial wall motion and flow waveform on the wall shear rate distribution in the divergent vascular graft.
    Rhee K; Lee SM
    Ann Biomed Eng; 1998; 26(6):955-64. PubMed ID: 9846934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft: computational study.
    Kute SM; Vorp DA
    J Biomech Eng; 2001 Jun; 123(3):277-83. PubMed ID: 11476372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis.
    Lei M; Archie JP; Kleinstreuer C
    J Vasc Surg; 1997 Apr; 25(4):637-46. PubMed ID: 9129618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow visualization analysis in a model of artery-graft anastomosis.
    Matsumoto T; Naiki T; Hayashi K
    Biomed Mater Eng; 1992; 2(4):171-83. PubMed ID: 1483119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of angle on wall shear stress distribution for an end-to-side anastomosis.
    Ojha M; Cobbold RS; Johnston KW
    J Vasc Surg; 1994 Jun; 19(6):1067-73. PubMed ID: 8201708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow dynamics across end-to-end vascular bypass graft anastomoses.
    Kim YH; Chandran KB; Bower TJ; Corson JD
    Ann Biomed Eng; 1993; 21(4):311-20. PubMed ID: 8214816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow waveform effects on end-to-side anastomotic flow patterns.
    Ethier CR; Steinman DA; Zhang X; Karpik SR; Ojha M
    J Biomech; 1998 Jul; 31(7):609-17. PubMed ID: 9796683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study.
    Keynton RS; Evancho MM; Sims RL; Rodway NV; Gobin A; Rittgers SE
    J Biomech Eng; 2001 Oct; 123(5):464-73. PubMed ID: 11601732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wall shear rate distribution in an abdominal aortic bifurcation model: effects of vessel compliance and phase angle between pressure and flow waveforms.
    Lee CS; Tarbell JM
    J Biomech Eng; 1997 Aug; 119(3):333-42. PubMed ID: 9285347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia.
    Hofer M; Rappitsch G; Perktold K; Trubel W; Schima H
    J Biomech; 1996 Oct; 29(10):1297-308. PubMed ID: 8884475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamic factors at the distal end-to-side anastomosis of a bypass graft with different POS:DOS flow ratios.
    Li XM; Rittgers SE
    J Biomech Eng; 2001 Jun; 123(3):270-6. PubMed ID: 11476371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical model study of flow dynamics through an end-to-side anastomosis: choice of anastomosis angle and prosthesis diameter.
    Pousset Y; Lermusiaux P; Berton G; Le Gouez JM; Leroy R
    Ann Vasc Surg; 2006 Nov; 20(6):773-9. PubMed ID: 17136315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulation of wall shear stress conditions and platelet localization in realistic end-to-side arterial anastomoses.
    Longest PW; Kleinstreuer C
    J Biomech Eng; 2003 Oct; 125(5):671-81. PubMed ID: 14618926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis.
    Papaharilaou Y; Doorly DJ; Sherwin SJ
    J Biomech; 2002 Sep; 35(9):1225-39. PubMed ID: 12163312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of a vascular graft/natural artery compliance mismatch on pulsatile flow.
    Stewart SF; Lyman DJ
    J Biomech; 1992 Mar; 25(3):297-310. PubMed ID: 1564063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative contribution of wall shear stress and injury in experimental intimal thickening at PTFE end-to-side arterial anastomoses.
    Loth F; Jones SA; Zarins CK; Giddens DP; Nassar RF; Glagov S; Bassiouny HS
    J Biomech Eng; 2002 Feb; 124(1):44-51. PubMed ID: 11871604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ratio of diameters between the target artery and the bypass modifies hemodynamic parameters related to intimal hyperplasia in the distal end-to-side anastomosis.
    Grus T; Lambert L; Matěcha J; Grusová G; Špaček M; Mlček M
    Physiol Res; 2016 Dec; 65(6):901-908. PubMed ID: 27539100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.