These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 8051194)

  • 21. In situ permeability measurement of the mammalian lacunar-canalicular system.
    Gardinier JD; Townend CW; Jen KP; Wu Q; Duncan RL; Wang L
    Bone; 2010 Apr; 46(4):1075-81. PubMed ID: 20080221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiscale finite element modeling of mechanical strains and fluid flow in osteocyte lacunocanalicular system.
    Ganesh T; Laughrey LE; Niroobakhsh M; Lara-Castillo N
    Bone; 2020 Aug; 137():115328. PubMed ID: 32201360
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A theoretical model for stress-generated fluid flow in the canaliculi-lacunae network in bone tissue.
    Kufahl RH; Saha S
    J Biomech; 1990; 23(2):171-80. PubMed ID: 2312521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach.
    Verbruggen SW; Vaughan TJ; McNamara LM
    Biomech Model Mechanobiol; 2014 Jan; 13(1):85-97. PubMed ID: 23567965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanically stimulated osteocytes regulate osteoblastic activity via gap junctions.
    Taylor AF; Saunders MM; Shingle DL; Cimbala JM; Zhou Z; Donahue HJ
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C545-52. PubMed ID: 16885390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Do calcium fluxes within cortical bone affect osteocyte mechanosensitivity?
    Kaiser J; Lemaire T; Naili S; Sansalone V; Komarova SV
    J Theor Biol; 2012 Jun; 303():75-86. PubMed ID: 22420945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calcium response in osteocytic networks under steady and oscillatory fluid flow.
    Lu XL; Huo B; Park M; Guo XE
    Bone; 2012 Sep; 51(3):466-73. PubMed ID: 22750013
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Osteocyte Shape on Fluid Flow and Fluid Shear Stress of the Loaded Bone.
    Yang F; Yu W; Huo X; Li H; Qi Q; Yang X; Shi N; Wu X; Chen W
    Biomed Res Int; 2022; 2022():3935803. PubMed ID: 35677099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synchrotron X-ray phase nano-tomography-based analysis of the lacunar-canalicular network morphology and its relation to the strains experienced by osteocytes in situ as predicted by case-specific finite element analysis.
    Varga P; Hesse B; Langer M; Schrof S; Männicke N; Suhonen H; Pacureanu A; Pahr D; Peyrin F; Raum K
    Biomech Model Mechanobiol; 2015 Apr; 14(2):267-82. PubMed ID: 25011566
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interstitial fluid flow within bone canaliculi and electro-chemo-mechanical features of the canalicular milieu: a multi-parametric sensitivity analysis.
    Sansalone V; Kaiser J; Naili S; Lemaire T
    Biomech Model Mechanobiol; 2013 Jun; 12(3):533-53. PubMed ID: 22869342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrastructure of the osteocyte process and its pericellular matrix.
    You LD; Weinbaum S; Cowin SC; Schaffler MB
    Anat Rec A Discov Mol Cell Evol Biol; 2004 Jun; 278(2):505-13. PubMed ID: 15164337
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Osteocyte lacunar strain determination using multiscale finite element analysis.
    Kola SK; Begonia MT; Tiede-Lewis LM; Laughrey LE; Dallas SL; Johnson ML; Ganesh T
    Bone Rep; 2020 Jun; 12():100277. PubMed ID: 32478144
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Attachment of osteocyte cell processes to the bone matrix.
    McNamara LM; Majeska RJ; Weinbaum S; Friedrich V; Schaffler MB
    Anat Rec (Hoboken); 2009 Mar; 292(3):355-63. PubMed ID: 19248169
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluid pressure relaxation depends upon osteonal microstructure: modeling an oscillatory bending experiment.
    Wang L; Fritton SP; Cowin SC; Weinbaum S
    J Biomech; 1999 Jul; 32(7):663-72. PubMed ID: 10400353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Osteocyte and bone structure.
    Klein-Nulend J; Nijweide PJ; Burger EH
    Curr Osteoporos Rep; 2003 Jun; 1(1):5-10. PubMed ID: 16036059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perlecan-containing pericellular matrix regulates solute transport and mechanosensing within the osteocyte lacunar-canalicular system.
    Wang B; Lai X; Price C; Thompson WR; Li W; Quabili TR; Tseng WJ; Liu XS; Zhang H; Pan J; Kirn-Safran CB; Farach-Carson MC; Wang L
    J Bone Miner Res; 2014 Apr; 29(4):878-91. PubMed ID: 24115222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nano-microscale models of periosteocytic flow show differences in stresses imparted to cell body and processes.
    Anderson EJ; Kaliyamoorthy S; Iwan J; Alexander D; Knothe Tate ML
    Ann Biomed Eng; 2005 Jan; 33(1):52-62. PubMed ID: 15709705
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic fluid flow induced mechanobiological modulation of in situ osteocyte calcium oscillations.
    Hu M; Tian GW; Gibbons DE; Jiao J; Qin YX
    Arch Biochem Biophys; 2015 Aug; 579():55-61. PubMed ID: 26045248
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deformation-induced hierarchical flows and drag forces in bone canaliculi and matrix microporosity.
    Mak AF; Huang DT; Zhang JD; Tong P
    J Biomech; 1997 Jan; 30(1):11-8. PubMed ID: 8970919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactive effects of various loading parameters on the fluid dynamics within the lacunar-canalicular system for a single osteocyte.
    Wang H; Du T; Li R; Main RP; Yang H
    Bone; 2022 May; 158():116367. PubMed ID: 35181573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.