These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 8051194)

  • 41. Computational modeling based on confocal imaging predicts changes in osteocyte and dendrite shear stress due to canalicular loss with aging.
    Niroobakhsh M; Laughrey LE; Dallas SL; Johnson ML; Ganesh T
    Biomech Model Mechanobiol; 2024 Feb; 23(1):129-143. PubMed ID: 37642807
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanosensory responses of osteocytes to physiological forces occur along processes and not cell body and require αVβ3 integrin.
    Thi MM; Suadicani SO; Schaffler MB; Weinbaum S; Spray DC
    Proc Natl Acad Sci U S A; 2013 Dec; 110(52):21012-7. PubMed ID: 24324138
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fluid shear stress induces less calcium response in a single primary osteocyte than in a single osteoblast: implication of different focal adhesion formation.
    Kamioka H; Sugawara Y; Murshid SA; Ishihara Y; Honjo T; Takano-Yamamoto T
    J Bone Miner Res; 2006 Jul; 21(7):1012-21. PubMed ID: 16813522
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pressure and shear stress in trabecular bone marrow during whole bone loading.
    Metzger TA; Schwaner SA; LaNeve AJ; Kreipke TC; Niebur GL
    J Biomech; 2015 Sep; 48(12):3035-43. PubMed ID: 26283413
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Osteocyte calcium signaling response to bone matrix deformation.
    Adachi T; Aonuma Y; Ito S; Tanaka M; Hojo M; Takano-Yamamoto T; Kamioka H
    J Biomech; 2009 Nov; 42(15):2507-12. PubMed ID: 19665124
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bone strain sensation via transmembrane potential changes in surface osteoblasts: loading rate and microstructural implications.
    Harrigan TP; Hamilton JJ
    J Biomech; 1993 Feb; 26(2):183-200. PubMed ID: 8429060
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Finite Element Models of Osteocytes and Their Load-Induced Activation.
    Smit TH
    Curr Osteoporos Rep; 2022 Apr; 20(2):127-140. PubMed ID: 35298773
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computational Investigation on the Biomechanical Responses of the Osteocytes to the Compressive Stimulus: A Poroelastic Model.
    Wang L; Dong J; Xian CJ
    Biomed Res Int; 2018; 2018():4071356. PubMed ID: 29581973
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Function of osteocytes in bone--their role in mechanotransduction.
    Burger EH; Klein-Nulend J; van der Plas A; Nijweide PJ
    J Nutr; 1995 Jul; 125(7 Suppl):2020S-2023S. PubMed ID: 7602386
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Single molecule force measurements of perlecan/HSPG2: A key component of the osteocyte pericellular matrix.
    Wijeratne SS; Martinez JR; Grindel BJ; Frey EW; Li J; Wang L; Farach-Carson MC; Kiang CH
    Matrix Biol; 2016 Mar; 50():27-38. PubMed ID: 26546708
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparative analysis of diffusive and stress induced nutrient transport efficiency in the lacunar-canalicular system of osteons.
    Petrov N; Pollack SR
    Biorheology; 2003; 40(1-3):347-53. PubMed ID: 12454425
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling tracer transport in an osteon under cyclic loading.
    Wang L; Cowin SC; Weinbaum S; Fritton SP
    Ann Biomed Eng; 2000; 28(10):1200-9. PubMed ID: 11144981
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical simulations of fluid flow in trabecular-lacunar cavities under cyclic loading.
    Zhao S; Chen Z; Li T; Sun Q; Leng H; Huo B
    Comput Biol Med; 2023 Sep; 163():107144. PubMed ID: 37315384
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Both network architecture and micro cracks effects on lacuno-canalicular liquid flow efficiency within the context of multiphysics approach for bone remodeling.
    Boucetta A; Ramtani S; Garzón-Alvarado DA
    J Mech Behav Biomed Mater; 2023 May; 141():105780. PubMed ID: 36989871
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Osteocytes and bone lining cells: which are the best candidates for mechano-sensors in cancellous bone?
    Mullender MG; Huiskes R
    Bone; 1997 Jun; 20(6):527-32. PubMed ID: 9177866
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Correlation of cell strain in single osteocytes with intracellular calcium, but not intracellular nitric oxide, in response to fluid flow.
    Rath AL; Bonewald LF; Ling J; Jiang JX; Van Dyke ME; Nicolella DP
    J Biomech; 2010 May; 43(8):1560-4. PubMed ID: 20189178
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Numerical simulation of osteocyte cell in response to directional mechanical loadings and mechanotransduction analysis: Considering lacunar-canalicular interstitial fluid flow.
    Joukar A; Niroomand-Oscuii H; Ghalichi F
    Comput Methods Programs Biomed; 2016 Sep; 133():133-141. PubMed ID: 27393805
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Osteocytes and mechanical stress].
    Kamioka H; Yamashiro T
    Clin Calcium; 2008 Sep; 18(9):1287-93. PubMed ID: 18758034
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bone permeability and mechanotransduction: Some current insights into the function of the lacunar-canalicular network.
    Murshid SA
    Tissue Cell; 2022 Apr; 75():101730. PubMed ID: 35032785
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Would increased interstitial fluid flow through in situ mechanical stimulation enhance bone remodeling?
    Letechipia JE; Alessi A; Rodriguez G; Asbun J
    Med Hypotheses; 2010 Aug; 75(2):196-8. PubMed ID: 20227836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.