These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 8051221)
1. A single temperature amplification technique applied to the detection of citrus tristeza viral RNA in plant nucleic acid extracts. Lair SV; Mirkov TE; Dodds JA; Murphy MF J Virol Methods; 1994 Apr; 47(1-2):141-51. PubMed ID: 8051221 [TBL] [Abstract][Full Text] [Related]
2. Development of a simple and rapid reverse transcription-loop mediated isothermal amplification (RT-LAMP) assay for sensitive detection of Citrus tristeza virus. Warghane A; Misra P; Bhose S; Biswas KK; Sharma AK; Reddy MK; Ghosh DK J Virol Methods; 2017 Dec; 250():6-10. PubMed ID: 28941614 [TBL] [Abstract][Full Text] [Related]
3. Calculation of diagnostic parameters of advanced serological and molecular tissue-print methods for detection of Citrus tristeza virus: a model for other plant pathogens. Vidal E; Yokomi RK; Moreno A; Bertolini E; Cambra M Phytopathology; 2012 Jan; 102(1):114-21. PubMed ID: 21879789 [TBL] [Abstract][Full Text] [Related]
4. Development of a reverse transcription recombinase polymerase based isothermal amplification coupled with lateral flow immunochromatographic assay (CTV-RT-RPA-LFICA) for rapid detection of Citrus tristeza virus. Ghosh DK; Kokane SB; Gowda S Sci Rep; 2020 Nov; 10(1):20593. PubMed ID: 33244066 [TBL] [Abstract][Full Text] [Related]
5. Development and validation of a multiplex reverse transcription quantitative PCR (RT-qPCR) assay for the rapid detection of Citrus tristeza virus, Citrus psorosis virus, and Citrus leaf blotch virus. Osman F; Hodzic E; Kwon SJ; Wang J; Vidalakis G J Virol Methods; 2015 Aug; 220():64-75. PubMed ID: 25907469 [TBL] [Abstract][Full Text] [Related]
6. Diversity of citrus tristeza virus isolates indicated by dsRNA analysis. Dodds JA; Jordan RL; Roistacher CN; Jarupat T Intervirology; 1987; 27(4):177-88. PubMed ID: 3692724 [TBL] [Abstract][Full Text] [Related]
7. PCR amplification of a specific double-stranded RNA region of Fiji disease virus from diseased sugarcane. Smith GR; Van de Velde R; Dale JL J Virol Methods; 1992 Sep; 39(3):237-46. PubMed ID: 1385465 [TBL] [Abstract][Full Text] [Related]
8. A new procedure to differentiate citrus tristeza virus isolates by hybridisation with digoxigenin-labelled cDNA probes. Narváez G; Skander BS; Ayllón MA; Rubio L; Guerri J; Moreno P J Virol Methods; 2000 Mar; 85(1-2):83-92. PubMed ID: 10716341 [TBL] [Abstract][Full Text] [Related]
10. Characterization of a virus infecting Citrus volkameriana with citrus leprosis-like symptoms. Melzer MJ; Sether DM; Borth WB; Hu JS Phytopathology; 2012 Jan; 102(1):122-7. PubMed ID: 21916557 [TBL] [Abstract][Full Text] [Related]
11. Polymorphism of the 5' terminal region of Citrus tristeza virus (CTV) RNA: incidence of three sequence types in isolates of different origin and pathogenicity. Ayllón MA; López C; Navas-Castillo J; Garnsey SM; Guerri J; Flores R; Moreno P Arch Virol; 2001; 146(1):27-40. PubMed ID: 11266215 [TBL] [Abstract][Full Text] [Related]
12. Quantitative detection of Citrus tristeza virus in citrus and aphids by real-time reverse transcription-PCR (TaqMan). Saponari M; Manjunath K; Yokomi RK J Virol Methods; 2008 Jan; 147(1):43-53. PubMed ID: 17888522 [TBL] [Abstract][Full Text] [Related]
13. Characterisation of isolates and strains of citrus tristeza closterovirus using restriction analysis of the coat protein gene amplified by the polymerase chain reaction. Gillings M; Broadbent P; Indsto J; Lee R J Virol Methods; 1993 Oct; 44(2-3):305-17. PubMed ID: 7903310 [TBL] [Abstract][Full Text] [Related]
14. Development of a dot-immunobinding assay for detection of citrus tristeza virus. Rocha-Peña MA; Lee RF; Niblett CL J Virol Methods; 1991 Oct; 34(3):297-309. PubMed ID: 1744220 [TBL] [Abstract][Full Text] [Related]
15. Detection of double-stranded RNA by ELISA and dot immunobinding assay using an antiserum to synthetic polynucleotides. Aramburu J; Navas-Castillo J; Moreno P; Cambra M J Virol Methods; 1991 Jun; 33(1-2):1-11. PubMed ID: 1939501 [TBL] [Abstract][Full Text] [Related]
16. Molecular characterization of an isolate of citrus tristeza virus that causes severe symptoms in sweet orange. Yang ZN; Mathews DM; Dodds JA; Mirkov TE Virus Genes; 1999; 19(2):131-42. PubMed ID: 10541017 [TBL] [Abstract][Full Text] [Related]
17. Discrimination between mild and severe Citrus tristeza virus isolates with a rapid and highly specific real-time reverse transcription-polymerase chain reaction method using TaqMan LNA probes. Ruiz-Ruiz S; Moreno P; Guerri J; Ambrós S Phytopathology; 2009 Mar; 99(3):307-15. PubMed ID: 19203284 [TBL] [Abstract][Full Text] [Related]
18. Validation of high-throughput real time polymerase chain reaction assays for simultaneous detection of invasive citrus pathogens. Saponari M; Loconsole G; Liao HH; Jiang B; Savino V; Yokomi RK J Virol Methods; 2013 Nov; 193(2):478-86. PubMed ID: 23891873 [TBL] [Abstract][Full Text] [Related]
19. Defective RNA molecules associated with citrus tristeza virus. Mawassi M; Karasev AV; Mietkiewska E; Gafny R; Lee RF; Dawson WO; Bar-Joseph M Virology; 1995 Apr; 208(1):383-7. PubMed ID: 11831725 [TBL] [Abstract][Full Text] [Related]
20. Characterization of isolates of Citrus tristeza virus by sequential analyses of enzyme immunoassays and capillary electrophoresis-single-strand conformation polymorphisms. Licciardello G; Raspagliesi D; Bar-Joseph M; Catara A J Virol Methods; 2012 May; 181(2):139-47. PubMed ID: 22305960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]