BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 805136)

  • 1. Effects of pentanoic acid and 4-pentenoic acid on the intracellular fluxes of acetyl coenzyme A in Tetrahymena.
    Raugi GJ; Liang TC; Blum JJ
    J Biol Chem; 1975 Jun; 250(11):4067-72. PubMed ID: 805136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of 4-pentenoic acid on intermediate metabolism of Tetrahymena.
    Liang T; Raugi GJ; Blum JJ
    J Protozool; 1976 Feb; 23(1):186-93. PubMed ID: 818368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantitative analysis of metabolite fluxes along some of the pathways of intermediary metabolism in Tetrahymena pyriformis.
    Raugi GJ; Liang T; Blum JJ
    J Biol Chem; 1975 Aug; 250(15):5866-76. PubMed ID: 807576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural organization of three pools of acetyl coenzyme A in Tetrahymena.
    Raugi GJ; Liang T; Blum JJ
    J Biol Chem; 1973 Dec; 248(23):8064-72. PubMed ID: 4201779
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of oxygen on the regulation of intermediate metabolism in Tetrahymena.
    Raugi GJ; Liang T; Blum JJ
    J Biol Chem; 1975 Jan; 250(2):445-60. PubMed ID: 803492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of tolbutamide on the intracellular flow of acetyl coenzyme A in Tetrahymena.
    Liang T; Raugi GJ; Blum JJ
    J Biol Chem; 1973 Dec; 248(23):8073-8. PubMed ID: 4201780
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of adenosine monophosphate on intermediate metabolism and ribonucleic acid synthesis in Tetrahymena.
    Raugi GJ; Liang T; Blum JJ
    J Biol Chem; 1973 Dec; 248(23):8079-85. PubMed ID: 4201781
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of methoxyindole 2-carboxylic acid and 4-pentenoic acid on adipose tissue metabolism.
    Gorin E; Zendowski S
    Biochim Biophys Acta; 1975 May; 388(2):268-78. PubMed ID: 1138899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of intermediary metabolism in Tetrahymena. Cells grown in proteose-peptone and resuspended in a defined nutrient-rich medium.
    Stein RB; Blum JJ
    J Biol Chem; 1979 Oct; 254(20):10385-95. PubMed ID: 114525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leucine catabolism and CO2 fixation into fatty acids by Tetrahymena: evidence for two pools of CO2.
    Borowitz M; Raugi G; Liang T; Blum JJ
    J Biol Chem; 1977 May; 252(10):3402-7. PubMed ID: 405384
    [No Abstract]   [Full Text] [Related]  

  • 11. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of the free acids and their carnitine esters on coenzyme A-dependent oxidations in rat liver mitochondria.
    Holland PC; Sherratt HS
    Biochem J; 1973 Sep; 136(1):157-71. PubMed ID: 4772622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of clofibrate on CO2 fixation into glycogen and fatty acids via the leucine catabolism pathway in Tetrahymena.
    Blum JJ
    Biochim Biophys Acta; 1980 Feb; 628(1):46-56. PubMed ID: 6766749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of P-enolpyruvate carboxykinase and of glyconeogenesis in Tetrahymena by 3-mercaptopicolinic acid.
    Liang T; Raugi GJ; Blum JJ
    J Protozool; 1976 Aug; 23(3):473-7. PubMed ID: 823332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of glucose starvation on the oxidation of fatty acids by maize root tip mitochondria and peroxisomes: evidence for mitochondrial fatty acid beta-oxidation and acyl-CoA dehydrogenase activity in a higher plant.
    Dieuaide M; Couée I; Pradet A; Raymond P
    Biochem J; 1993 Nov; 296 ( Pt 1)(Pt 1):199-207. PubMed ID: 8250843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing peroxisomal beta-oxidation and the labelling of acetyl-CoA proxies with [1-(13C)]octanoate and [3-(13C)]octanoate in the perfused rat liver.
    Kasumov T; Adams JE; Bian F; David F; Thomas KR; Jobbins KA; Minkler PE; Hoppel CL; Brunengraber H
    Biochem J; 2005 Jul; 389(Pt 2):397-401. PubMed ID: 15773815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of acetate on palmitate and octanoate oxidation: segregation of acetyl CoA pools.
    Cederbaum AI; Rubin E
    Arch Biochem Biophys; 1975 Feb; 166(2):618-28. PubMed ID: 1119812
    [No Abstract]   [Full Text] [Related]  

  • 17. Metabolic pathways in Tetrahymena. II. Compartmentalization of acetyl coenzyme A and structure of the glycolytic and gluconeogenic pathways.
    Connett RJ; Wittels B; Blum JJ
    J Biol Chem; 1972 May; 247(9):2657-61. PubMed ID: 4623556
    [No Abstract]   [Full Text] [Related]  

  • 18. Quantification of carbon fluxes through the tricarboxylic acid cycle in early germinating lettuce embryos.
    Salon C; Raymond P; Pradet A
    J Biol Chem; 1988 Sep; 263(25):12278-87. PubMed ID: 3137224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peroxisomal and mitochondrial oxidation of fatty acids in the heart, assessed from the 13C labeling of malonyl-CoA and the acetyl moiety of citrate.
    Bian F; Kasumov T; Thomas KR; Jobbins KA; David F; Minkler PE; Hoppel CL; Brunengraber H
    J Biol Chem; 2005 Mar; 280(10):9265-71. PubMed ID: 15611129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of alterations of the specific activity of the intracellular acetyl CoA pool on apparent rates of hepatic cholesterogenesis.
    Dietschy JM; Brown MS
    J Lipid Res; 1974 Sep; 15(5):508-16. PubMed ID: 4413018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.