These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 8051710)

  • 1. (His)C epsilon-H...O=C < hydrogen bond in the active sites of serine hydrolases.
    Derewenda ZS; Derewenda U; Kobos PM
    J Mol Biol; 1994 Aug; 241(1):83-93. PubMed ID: 8051710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The occurrence of C--H...O hydrogen bonds in alpha-helices and helix termini in globular proteins.
    Manikandan K; Ramakumar S
    Proteins; 2004 Sep; 56(4):768-81. PubMed ID: 15281129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active site dynamics of acyl-chymotrypsin.
    Nakagawa S; Yu HA; Karplus M; Umeyama H
    Proteins; 1993 Jun; 16(2):172-94. PubMed ID: 8332606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protonation-state dependence of hydrogen bond strengths and exchange rates in a serine protease catalytic triad: bovine chymotrypsinogen A.
    Markley JL; Westler WM
    Biochemistry; 1996 Aug; 35(34):11092-7. PubMed ID: 8780512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do enzymes change the nature of transition states? Mapping the transition state for general acid-base catalysis of a serine protease.
    Bott RR; Chan G; Domingo B; Ganshaw G; Hsia CY; Knapp M; Murray CJ
    Biochemistry; 2003 Sep; 42(36):10545-53. PubMed ID: 12962477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site.
    Katz BA; Elrod K; Luong C; Rice MJ; Mackman RL; Sprengeler PA; Spencer J; Hataye J; Janc J; Link J; Litvak J; Rai R; Rice K; Sideris S; Verner E; Young W
    J Mol Biol; 2001 Apr; 307(5):1451-86. PubMed ID: 11292354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-barrier hydrogen bond hypothesis in the catalytic triad residue of serine proteases: correlation between structural rearrangement and chemical shifts in the acylation process.
    Ishida T
    Biochemistry; 2006 May; 45(17):5413-20. PubMed ID: 16634622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subangstrom crystallography reveals that short ionic hydrogen bonds, and not a His-Asp low-barrier hydrogen bond, stabilize the transition state in serine protease catalysis.
    Fuhrmann CN; Daugherty MD; Agard DA
    J Am Chem Soc; 2006 Jul; 128(28):9086-102. PubMed ID: 16834383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state.
    Nicolas A; Egmond M; Verrips CT; de Vlieg J; Longhi S; Cambillau C; Martinez C
    Biochemistry; 1996 Jan; 35(2):398-410. PubMed ID: 8555209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum.
    Schrag JD; Li YG; Wu S; Cygler M
    Nature; 1991 Jun; 351(6329):761-4. PubMed ID: 2062369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of a feruloyl esterase from Aspergillus niger.
    McAuley KE; Svendsen A; Patkar SA; Wilson KS
    Acta Crystallogr D Biol Crystallogr; 2004 May; 60(Pt 5):878-87. PubMed ID: 15103133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure of nucleotidylated histidine-166 of galactose-1-phosphate uridylyltransferase provides insight into phosphoryl group transfer.
    Wedekind JE; Frey PA; Rayment I
    Biochemistry; 1996 Sep; 35(36):11560-9. PubMed ID: 8794735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 0.78 A structure of a serine protease: Bacillus lentus subtilisin.
    Kuhn P; Knapp M; Soltis SM; Ganshaw G; Thoene M; Bott R
    Biochemistry; 1998 Sep; 37(39):13446-52. PubMed ID: 9753430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active site structure in cytochrome c peroxidase and myoglobin mutants: effects of altered hydrogen bonding to the proximal histidine.
    Sinclair R; Hallam S; Chen M; Chance B; Powers L
    Biochemistry; 1996 Nov; 35(47):15120-8. PubMed ID: 8942679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A serine protease triad forms the catalytic centre of a triacylglycerol lipase.
    Brady L; Brzozowski AM; Derewenda ZS; Dodson E; Dodson G; Tolley S; Turkenburg JP; Christiansen L; Huge-Jensen B; Norskov L
    Nature; 1990 Feb; 343(6260):767-70. PubMed ID: 2304552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The strength of dehalogenase-substrate hydrogen bonding correlates with the rate of Meisenheimer intermediate formation.
    Dong J; Lu X; Wei Y; Luo L; Dunaway-Mariano D; Carey PR
    Biochemistry; 2003 Aug; 42(31):9482-90. PubMed ID: 12899635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The low barrier hydrogen bond (LBHB) proposal revisited: the case of the Asp... His pair in serine proteases.
    Schutz CN; Warshel A
    Proteins; 2004 May; 55(3):711-23. PubMed ID: 15103633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of an elastase-specific inhibitor elafin complexed with porcine pancreatic elastase determined at 1.9 A resolution.
    Tsunemi M; Matsuura Y; Sakakibara S; Katsube Y
    Biochemistry; 1996 Sep; 35(36):11570-6. PubMed ID: 8794736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of phenylmethanesulfonyl fluoride-treated human chymase at 1.9 A.
    McGrath ME; Mirzadegan T; Schmidt BF
    Biochemistry; 1997 Nov; 36(47):14318-24. PubMed ID: 9400368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The unusually strong hydrogen bond between the carbonyl of Q(A) and His M219 in the Rhodobacter sphaeroides reaction center is not essential for efficient electron transfer from Q(A)(-) to Q(B).
    Breton J; Lavergne J; Wakeham MC; Nabedryk E; Jones MR
    Biochemistry; 2007 Jun; 46(22):6468-76. PubMed ID: 17497939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.