These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 8051715)
1. Influence of particle dose on the cytotoxicity of hamster and rat pulmonary alveolar macrophage in vitro. Warshawsky D; Reilman R; Cheu J; Radike M; Rice C J Toxicol Environ Health; 1994 Aug; 42(4):407-21. PubMed ID: 8051715 [TBL] [Abstract][Full Text] [Related]
2. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Sayes CM; Reed KL; Warheit DB Toxicol Sci; 2007 May; 97(1):163-80. PubMed ID: 17301066 [TBL] [Abstract][Full Text] [Related]
3. Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles. Oberdorster G Inhal Toxicol; 1996; 8 Suppl():73-89. PubMed ID: 11542496 [TBL] [Abstract][Full Text] [Related]
4. Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: impact of surface treatments on particle toxicity. Warheit DB; Brock WJ; Lee KP; Webb TR; Reed KL Toxicol Sci; 2005 Dec; 88(2):514-24. PubMed ID: 16177240 [TBL] [Abstract][Full Text] [Related]
5. Role of inducible nitric oxide synthase-derived nitric oxide in silica-induced pulmonary inflammation and fibrosis. Zeidler P; Hubbs A; Battelli L; Castranova V J Toxicol Environ Health A; 2004 Jul; 67(13):1001-26. PubMed ID: 15205031 [TBL] [Abstract][Full Text] [Related]
6. Influence of the dose levels of cocarcinogen ferric oxide on the metabolism of benzo[a]pyrene by pulmonary alveolar macrophages in suspension culture. Greife AL; Warshawsky D J Toxicol Environ Health; 1993 Apr; 38(4):399-417. PubMed ID: 8386775 [TBL] [Abstract][Full Text] [Related]
7. Comparison of inducible nitric oxide synthase gene expression and lung inflammation following intratracheal instillation of silica, coal, carbonyl iron, or titanium dioxide in rats. Blackford JA; Jones W; Dey RD; Castranova V J Toxicol Environ Health; 1997 Jun; 51(3):203-18. PubMed ID: 9183378 [TBL] [Abstract][Full Text] [Related]
8. Influence of mineral dust surface chemistry on eicosanoid production by the alveolar macrophage. Kuhn DC; Demers LM J Toxicol Environ Health; 1992 Jan; 35(1):39-50. PubMed ID: 1309464 [TBL] [Abstract][Full Text] [Related]
9. Role of alveolar macrophage chemotaxis and phagocytosis in pulmonary clearance responses to inhaled particles: comparisons among rodent species. Warheit DB; Hartsky MA Microsc Res Tech; 1993 Dec; 26(5):412-22. PubMed ID: 8286787 [TBL] [Abstract][Full Text] [Related]
10. Cellular interaction of different forms of aluminum nanoparticles in rat alveolar macrophages. Wagner AJ; Bleckmann CA; Murdock RC; Schrand AM; Schlager JJ; Hussain SM J Phys Chem B; 2007 Jun; 111(25):7353-9. PubMed ID: 17547441 [TBL] [Abstract][Full Text] [Related]
11. Altered calcium homeostasis and cell injury in silica-exposed alveolar macrophages. Rojanasakul Y; Wang L; Malanga CJ; Ma JY; Banks DE; Ma JK J Cell Physiol; 1993 Feb; 154(2):310-6. PubMed ID: 8381126 [TBL] [Abstract][Full Text] [Related]
12. Deposition and translocation of inhaled silica in rats. Quantification of particle distribution, macrophage participation, and function. Brody AR; Roe MW; Evans JN; Davis GS Lab Invest; 1982 Dec; 47(6):533-42. PubMed ID: 6292578 [TBL] [Abstract][Full Text] [Related]
13. Serum enhanced cytokine responses of macrophages to silica and iron oxide particles and nanomaterials: a comparison of serum to lung lining fluid and albumin dispersions. Brown DM; Johnston H; Gubbins E; Stone V J Appl Toxicol; 2014 Nov; 34(11):1177-87. PubMed ID: 24737200 [TBL] [Abstract][Full Text] [Related]
14. Increase in a distinct pulmonary macrophage subset possessing an antigen-presenting cell phenotype and in vitro APC activity following silica exposure. Migliaccio CT; Hamilton RF; Holian A Toxicol Appl Pharmacol; 2005 Jun; 205(2):168-76. PubMed ID: 15893544 [TBL] [Abstract][Full Text] [Related]
16. Pulmonary toxicity and fate of agglomerated 10 and 40 nm aluminum oxyhydroxides following 4-week inhalation exposure of rats: toxic effects are determined by agglomerated, not primary particle size. Pauluhn J Toxicol Sci; 2009 May; 109(1):152-67. PubMed ID: 19251949 [TBL] [Abstract][Full Text] [Related]
17. Five-day inhalation toxicity study of three types of synthetic amorphous silicas in Wistar rats and post-exposure evaluations for up to 3 months. Arts JH; Muijser H; Duistermaat E; Junker K; Kuper CF Food Chem Toxicol; 2007 Oct; 45(10):1856-67. PubMed ID: 17524541 [TBL] [Abstract][Full Text] [Related]
18. Particle opsonization and lung macrophage cytokine response. In vitro and in vivo analysis. Kobzik L; Huang S; Paulauskis JD; Godleski JJ J Immunol; 1993 Sep; 151(5):2753-9. PubMed ID: 8360489 [TBL] [Abstract][Full Text] [Related]
19. Characteristics of alveolar macrophages following the deposition of a low burden or iron oxide in the lung. Lehnert BE; Morrow PE J Toxicol Environ Health; 1985; 16(6):855-68. PubMed ID: 4093998 [TBL] [Abstract][Full Text] [Related]
20. Measurement of the release of inflammatory mediators from rat alveolar macrophages and alveolar type II cells following lipopolysaccharide or silica exposure: a comparative study. Kanj RS; Kang JL; Castranova V J Toxicol Environ Health A; 2005 Feb; 68(3):185-207. PubMed ID: 15762179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]