These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 8051945)
1. A novel use of differential equations to fit exponential functions to experimental data. Martin JL; Maconochie DJ; Knight DE J Neurosci Methods; 1994 Mar; 51(2):135-46. PubMed ID: 8051945 [TBL] [Abstract][Full Text] [Related]
2. A simple non-iterative procedure for fitting of multiexponential functions. Mironov SL J Neurosci Methods; 1991 Jul; 38(2-3):243-6. PubMed ID: 1784127 [TBL] [Abstract][Full Text] [Related]
4. Inversion of Markov processes to determine rate constants from single-channel data. Jackson MB Biophys J; 1997 Sep; 73(3):1382-94. PubMed ID: 9284305 [TBL] [Abstract][Full Text] [Related]
5. Number of exponential terms describing the solution of an N-compartmental mammillary model: vanishing exponentials. Vaughan DP; Dennis MJ J Pharmacokinet Biopharm; 1979 Oct; 7(5):511-25. PubMed ID: 529020 [TBL] [Abstract][Full Text] [Related]
6. Membrane transport models with fast and slow reactions: general analytical solution for a single relaxation. Roy G; Wierzbicki W; Sauvé R J Membr Biol; 1991 Aug; 123(2):105-13. PubMed ID: 1956072 [TBL] [Abstract][Full Text] [Related]
8. Calculating the hybrid (macro) rate constants of a three-compartment mamillary pharmacokinetic model from known micro-rate constants. Upton RN J Pharmacol Toxicol Methods; 2004; 49(1):65-8. PubMed ID: 14670695 [TBL] [Abstract][Full Text] [Related]
9. A mathematical study of simple exponential modelling in biochemical processes. Mazumdar J; Banerjee M; Teng LY Australas Phys Eng Sci Med; 1991 Dec; 14(4):226-33. PubMed ID: 1789775 [TBL] [Abstract][Full Text] [Related]
10. An analytical solution set for a four-compartment mixed mammillary/catenary model. Charkes ND; Siegel JA Nucl Med Commun; 1999 Jun; 20(6):575-80. PubMed ID: 10451871 [TBL] [Abstract][Full Text] [Related]
11. Fast and accurate fitting and filtering of noisy exponentials in Legendre space. Bao G; Schild D PLoS One; 2014; 9(3):e90500. PubMed ID: 24603904 [TBL] [Abstract][Full Text] [Related]
12. Brownian motion of the end-to-end distance in oligopeptide molecules: numerical solution of the diffusion equations as coupled first order linear differential equations. Steinberg IZ J Theor Biol; 1994 Jan; 166(2):173-87. PubMed ID: 8145567 [TBL] [Abstract][Full Text] [Related]
13. Analysis of protein aggregation kinetics. Ferrone F Methods Enzymol; 1999; 309():256-74. PubMed ID: 10507029 [TBL] [Abstract][Full Text] [Related]
14. Analytical methods for fitting integrated rate equations. A discontinuous assay. Boeker EA Biochem J; 1987 Jul; 245(1):67-74. PubMed ID: 3663158 [TBL] [Abstract][Full Text] [Related]
15. First-order compartment model solutions - Exponential sums and beyond. Świętaszczyk C; Jødal L J Pharmacol Toxicol Methods; 2024; 128():107534. PubMed ID: 38945309 [TBL] [Abstract][Full Text] [Related]
16. The routine fitting of kinetic data to models: a mathematical formalism for digital computers. BERMAN M; SHAHN E; WEISS MF Biophys J; 1962 May; 2(3):275-87. PubMed ID: 13867975 [TBL] [Abstract][Full Text] [Related]
17. Constructing general partial differential equations using polynomial and neural networks. Zjavka L; Pedrycz W Neural Netw; 2016 Jan; 73():58-69. PubMed ID: 26547244 [TBL] [Abstract][Full Text] [Related]
18. Kinetic analysis of biphasic protein modification reactions. Cooperative effects. Rakitzis ET Biophys Chem; 1983 Sep; 18(2):133-7. PubMed ID: 6626686 [TBL] [Abstract][Full Text] [Related]
19. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions. Grima R J Chem Phys; 2010 Jul; 133(3):035101. PubMed ID: 20649359 [TBL] [Abstract][Full Text] [Related]