BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8052150)

  • 1. Metabolic effects of galactose on human HepG2 hepatoblastoma cells.
    Davit-Spraul A; Pourci ML; Soni T; Lemonnier A
    Metabolism; 1994 Aug; 43(8):945-52. PubMed ID: 8052150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory effects of galactose on galactose-1-phosphate uridyltransferase activity on human hepatoblastoma HepG2 cells.
    Davit-Spraul A; Pourci ML; Ng KH; Soni T; Lemonnier A
    FEBS Lett; 1994 Nov; 354(2):232-6. PubMed ID: 7957929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Hereditary galactosemia in rats: biochemical mechanisms of the disease].
    Solov'eva NA; Kandaurov VA; Zaĭdman AM; Salganik RI
    Vopr Med Khim; 1982; 28(3):15-21. PubMed ID: 6213094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GALT deficiency causes UDP-hexose deficit in human galactosemic cells.
    Lai K; Langley SD; Khwaja FW; Schmitt EW; Elsas LJ
    Glycobiology; 2003 Apr; 13(4):285-94. PubMed ID: 12626383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular galactose-1-phosphate accumulation leads to environmental stress response in yeast model.
    Slepak T; Tang M; Addo F; Lai K
    Mol Genet Metab; 2005 Nov; 86(3):360-71. PubMed ID: 16169270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of human UDP-glucose pyrophosphorylase rescues galactose-1-phosphate uridyltransferase-deficient yeast.
    Lai K; Elsas LJ
    Biochem Biophys Res Commun; 2000 May; 271(2):392-400. PubMed ID: 10799308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biochemical mechanisms of the development of hereditary galactosemia in W/SSM strain rats].
    Solov'eva NA; Salganik RI
    Genetika; 1982 Mar; 18(3):420-7. PubMed ID: 7200438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Galactose metabolism by the mouse with galactose-1-phosphate uridyltransferase deficiency.
    Ning C; Reynolds R; Chen J; Yager C; Berry GT; McNamara PD; Leslie N; Segal S
    Pediatr Res; 2000 Aug; 48(2):211-7. PubMed ID: 10926297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection and analysis of galactose metabolic pathway variants of a mouse liver cell line.
    Zaret KS; Stevens KA
    Mol Cell Biol; 1990 Sep; 10(9):4582-9. PubMed ID: 2167434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Galactose and glucose metabolism in galactokinase deficient, galactose-1-P-uridyl transferase deficient and normal human fibroblasts.
    Friedman TB; Yarkin RJ; Merril CR
    J Cell Physiol; 1975 Jun; 85(3):569-78. PubMed ID: 167035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Galactose metabolism in mice with galactose-1-phosphate uridyltransferase deficiency: sucklings and 7-week-old animals fed a high-galactose diet.
    Ning C; Reynolds R; Chen J; Yager C; Berry GT; Leslie N; Segal S
    Mol Genet Metab; 2001 Apr; 72(4):306-15. PubMed ID: 11286504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the regulation of the three enzymes of the Leloir pathway in cultured mammalian cells. I. Effect of substitution of galactose for glucose as the sole hexose in the medium in human diploid cell strains and in a rat hepatoma line.
    Stern ES; Krooth RS
    J Cell Physiol; 1975 Aug; 86(1):91-104. PubMed ID: 170294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Galactose utilization in Lactobacillus helveticus: isolation and characterization of the galactokinase (galK) and galactose-1-phosphate uridyl transferase (galT) genes.
    Mollet B; Pilloud N
    J Bacteriol; 1991 Jul; 173(14):4464-73. PubMed ID: 2066342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Metabolic cooperation in cocultures of fibroblasts from patients with various abnormalities of galactose metabolism].
    Kadhom N; Brivet M; Baptista J; Gautier M; Lemonnier A
    C R Acad Sci III; 1989; 308(17):453-8. PubMed ID: 2543487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute and long-term outcomes in a Drosophila melanogaster model of classic galactosemia occur independently of galactose-1-phosphate accumulation.
    Daenzer JM; Jumbo-Lucioni PP; Hopson ML; Garza KR; Ryan EL; Fridovich-Keil JL
    Dis Model Mech; 2016 Nov; 9(11):1375-1382. PubMed ID: 27562100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Analysis of the iron-related proteins during proliferation and differentiational change of human hepatoblastoma cells (HepG2)].
    Kamiya K
    Hokkaido Igaku Zasshi; 1996 Jan; 71(1):81-93. PubMed ID: 8727377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Galactosemia: alterations in sulfate metabolism secondary to galactose-1-phosphate uridyltransferase deficiency.
    Tedesco TA; Miller KL
    Science; 1979 Sep; 205(4413):1395-7. PubMed ID: 472754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changing activities of galactose-metabolizing enzymes during perfusion of suckling-rat liver.
    Rogers S; Segal S
    Am J Physiol; 1981 Mar; 240(3):E333-9. PubMed ID: 6259949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Leloir Pathway of Galactose Metabolism - A Novel Therapeutic Target for Hepatocellular Carcinoma.
    Tang M; Etokidem E; Lai K
    Anticancer Res; 2016 Dec; 36(12):6265-6271. PubMed ID: 27919945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity of hepatic galactose-metabolizing enzymes in the pregnant rat and fetus.
    Rogers SR; Bovee BW; Saunders SL; Segal S
    Pediatr Res; 1989 Feb; 25(2):161-6. PubMed ID: 2537489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.