These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8052530)

  • 1. A plant scaffold attached region detected close to a T-DNA integration site is active in mammalian cells.
    Dietz A; Kay V; Schlake T; Landsmann J; Bode J
    Nucleic Acids Res; 1994 Jul; 22(14):2744-51. PubMed ID: 8052530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular structure and regulatory potential of a T-DNA integration site in petunia.
    Dietz-Pfeilstetter A; Arndt N; Kay V; Bode J
    Transgenic Res; 2003 Feb; 12(1):83-99. PubMed ID: 12650527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates.
    Tzfira T; Frankman LR; Vaidya M; Citovsky V
    Plant Physiol; 2003 Nov; 133(3):1011-23. PubMed ID: 14551323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic analysis of the virD operon of Agrobacterium tumefaciens: a search for functions involved in transport of T-DNA into the plant cell nucleus and in T-DNA integration.
    Koukolíková-Nicola Z; Raineri D; Stephens K; Ramos C; Tinland B; Nester EW; Hohn B
    J Bacteriol; 1993 Feb; 175(3):723-31. PubMed ID: 8380800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of chromatin upon Agrobacterium T-DNA integration and transgene expression.
    Gelvin SB; Kim SI
    Biochim Biophys Acta; 2007; 1769(5-6):410-21. PubMed ID: 17544520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer of T-DNA from Agrobacterium to the plant cell.
    Zupan JR; Zambryski P
    Plant Physiol; 1995 Apr; 107(4):1041-7. PubMed ID: 7770515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgene integration and organization in cotton (Gossypium hirsutum L.) genome.
    Zhang J; Cai L; Cheng J; Mao H; Fan X; Meng Z; Chan KM; Zhang H; Qi J; Ji L; Hong Y
    Transgenic Res; 2008 Apr; 17(2):293-306. PubMed ID: 17549600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamental discoveries and simple recombination between circular plasmid DNAs led to widespread use of Agrobacterium tumefaciens as a generalized vector for plant genetic engineering.
    Zambryski P
    Int J Dev Biol; 2013; 57(6-8):449-52. PubMed ID: 24166427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Petunia plants escape from negative selection against a transgene by silencing the foreign DNA via methylation.
    Renckens S; De Greve H; Van Montagu M; Hernalsteens JP
    Mol Gen Genet; 1992 May; 233(1-2):53-64. PubMed ID: 1376407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pBINPLUS: an improved plant transformation vector based on pBIN19.
    van Engelen FA; Molthoff JW; Conner AJ; Nap JP; Pereira A; Stiekema WJ
    Transgenic Res; 1995 Jul; 4(4):288-90. PubMed ID: 7655517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA rearrangement associated with the integration of T-DNA in tobacco: an example for multiple duplications of DNA around the integration target.
    Ohba T; Yoshioka Y; Machida C; Machida Y
    Plant J; 1995 Jan; 7(1):157-64. PubMed ID: 7894506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Agrobacterium rhizogenes GALLS gene encodes two secreted proteins required for genetic transformation of plants.
    Hodges LD; Lee LY; McNett H; Gelvin SB; Ream W
    J Bacteriol; 2009 Jan; 191(1):355-64. PubMed ID: 18952790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorghum (Sorghum bicolor L.).
    Zhao ZY
    Methods Mol Biol; 2006; 343():233-44. PubMed ID: 16988348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organ regulated expression of Parasponia andersonii haemoglobin gene in transgenic tobacco plants.
    Landsmann J; Llewellyn D; Dennis ES; Peacock WJ
    Mol Gen Genet; 1988 Sep; 214(1):68-73. PubMed ID: 3226425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Insight into T-DNA Integration Events in Medicago sativa.
    Nicolia A; Ferradini N; Veronesi F; Rosellini D
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28895894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A scaffold-associated DNA region is located downstream of the pea plastocyanin gene.
    Slatter RE; Dupree P; Gray JC
    Plant Cell; 1991 Nov; 3(11):1239-50. PubMed ID: 1821767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome.
    Gleave AP
    Plant Mol Biol; 1992 Dec; 20(6):1203-7. PubMed ID: 1463857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Higher plant transformation: principles and molecular tools.
    Anami S; Njuguna E; Coussens G; Aesaert S; Van Lijsebettens M
    Int J Dev Biol; 2013; 57(6-8):483-94. PubMed ID: 24166431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular analysis of Agrobacterium T-DNA integration in tomato reveals a role for left border sequence homology in most integration events.
    Thomas CM; Jones JD
    Mol Genet Genomics; 2007 Oct; 278(4):411-20. PubMed ID: 17574477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase.
    Vergunst AC; Jansen LE; Hooykaas PJ
    Nucleic Acids Res; 1998 Jun; 26(11):2729-34. PubMed ID: 9592161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.