These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 8052597)

  • 1. Dissection of an antibody-catalyzed reaction.
    Stewart JD; Krebs JF; Siuzdak G; Berdis AJ; Smithrud DB; Benkovic SJ
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7404-9. PubMed ID: 8052597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis of a catalytic antibody: an arginine and a histidine residue play key roles.
    Stewart JD; Roberts VA; Thomas NR; Getzoff ED; Benkovic SJ
    Biochemistry; 1994 Mar; 33(8):1994-2003. PubMed ID: 8117656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for amide hydrolysis catalyzed by the 43C9 antibody.
    Thayer MM; Olender EH; Arvai AS; Koike CK; Canestrelli IL; Stewart JD; Benkovic SJ; Getzoff ED; Roberts VA
    J Mol Biol; 1999 Aug; 291(2):329-45. PubMed ID: 10438624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct hydroxide attack is a plausible mechanism for amidase antibody 43C9.
    Chong LT; Bandyopadhyay P; Scanlan TS; Kuntz ID; Kollman PA
    J Comput Chem; 2003 Sep; 24(12):1371-7. PubMed ID: 12868101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic antibody model and mutagenesis implicate arginine in transition-state stabilization.
    Roberts VA; Stewart J; Benkovic SJ; Getzoff ED
    J Mol Biol; 1994 Jan; 235(3):1098-116. PubMed ID: 8289310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-Directed Chemical Mutations on Abzymes: Large Rate Accelerations in the Catalysis by Exchanging the Functionalized Small Nonprotein Components.
    Ishikawa F; Shirahashi M; Hayakawa H; Yamaguchi A; Hirokawa T; Tsumuraya T; Fujii I
    ACS Chem Biol; 2016 Oct; 11(10):2803-2811. PubMed ID: 27552288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed mutagenesis of active site contact residues in a hydrolytic abzyme: evidence for an essential histidine involved in transition state stabilization.
    Miyashita H; Hara T; Tanimura R; Fukuyama S; Cagnon C; Kohara A; Fujii I
    J Mol Biol; 1997 Apr; 267(5):1247-57. PubMed ID: 9150409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding the 43C9 class of catalytic antibodies using a chain-shuffling approach.
    Miller GP; Posner BA; Benkovic SJ
    Bioorg Med Chem; 1997 Mar; 5(3):581-90. PubMed ID: 9113336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The elicitation of carboxylesterase activity in antibodies by reactive immunization with labile organophosphorus antigens: a role for flexibility.
    Schowen RL
    J Immunol Methods; 2002 Nov; 269(1-2):59-65. PubMed ID: 12379352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of the transition-state stabilization in antibody-catalyzed hydrolysis.
    Sakakura M; Takahashi H; Shimba N; Fujii I; Shimada I
    J Mol Biol; 2007 Mar; 367(1):133-47. PubMed ID: 17239396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanism of enantioselective proton transfer to carbon in catalytic antibody 14D9.
    Zheng L; Baumann U; Reymond JL
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3387-92. PubMed ID: 14988504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of functionally important residues in the pyridoxal-5'-phosphate-dependent catalytic antibody 15A9.
    Mouratou B; Stetefeld J
    Biochemistry; 2004 Jun; 43(21):6612-9. PubMed ID: 15157094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis of the broad substrate tolerance of the antibody 7B9-catalyzed hydrolysis of p-nitrobenzyl esters.
    Miyamoto N; Yoshimura M; Okubo Y; Suzuki-Nagata K; Tsumuraya T; Ito N; Fujii I
    Bioorg Med Chem; 2018 May; 26(8):1412-1417. PubMed ID: 29496413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A possible hydrolysis mechanism of beta-naphthyl acetate catalyzed by antibodies.
    Yuan YR; Xia ZX; Yang CH; Yang BH; Yeh M
    Cell Res; 1998 Sep; 8(3):219-30. PubMed ID: 9791735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition state docking: a probe for noncovalent catalysis in biological systems. Application to antibody-catalyzed ester hydrolysis.
    Tantillo DJ; Houk KN
    J Comput Chem; 2002 Jan; 23(1):84-95. PubMed ID: 11913392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The electrostatic driving force for nucleophilic catalysis in L-arginine deiminase: a combined experimental and theoretical study.
    Li L; Li Z; Wang C; Xu D; Mariano PS; Guo H; Dunaway-Mariano D
    Biochemistry; 2008 Apr; 47(16):4721-32. PubMed ID: 18366187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that the mechanism of antibody-catalysed hydrolysis of arylcarbamates can be determined by the structure of the immunogen used to elicit the catalytic antibody.
    Boucher G; Said B; Ostler EL; Resmini M; Brocklehurst K; Gallacher G
    Biochem J; 2007 Feb; 401(3):721-6. PubMed ID: 17020536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positional ordering of reacting groups contributes significantly to the efficiency of proton transfer at an antibody active site.
    Seebeck FP; Hilvert D
    J Am Chem Soc; 2005 Feb; 127(4):1307-12. PubMed ID: 15669871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate.
    ValiƱa AL; Mazumder-Shivakumar D; Bruice TC
    Biochemistry; 2004 Dec; 43(50):15657-72. PubMed ID: 15595822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The enzymic nature of antibody catalysis: development of multistep kinetic processing.
    Benkovic SJ; Adams JA; Borders CL; Janda KD; Lerner RA
    Science; 1990 Nov; 250(4984):1135-9. PubMed ID: 2251500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.