These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8053153)

  • 1. The ADP-ribosyltransferases (gpAlt) of bacteriophages T2, T4, and T6: sequencing of the genes and comparison of their products.
    Koch T; Rüger W
    Virology; 1994 Sep; 203(2):294-8. PubMed ID: 8053153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ADP-ribosylation and early transcription regulation by bacteriophage T4.
    Wilkens K; Tiemann B; Bazan F; Rüger W
    Adv Exp Med Biol; 1997; 419():71-82. PubMed ID: 9193638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression, purification, and characterization of the ADP-ribosyltransferase (gpAlt) of bacteriophage T4: ADP-ribosylation of E. coli RNA polymerase modulates T4 "early" transcription.
    Koch T; Raudonikiene A; Wilkens K; Rüger W
    Gene Expr; 1995; 4(4-5):253-64. PubMed ID: 7787417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ModA and ModB, two ADP-ribosyltransferases encoded by bacteriophage T4: catalytic properties and mutation analysis.
    Tiemann B; Depping R; Gineikiene E; Kaliniene L; Nivinskas R; Rüger W
    J Bacteriol; 2004 Nov; 186(21):7262-72. PubMed ID: 15489438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional relationships and structural determinants of two bacteriophage T4 lysozymes: a soluble (gene e) and a baseplate-associated (gene 5) protein.
    Mosig G; Lin GW; Franklin J; Fan WH
    New Biol; 1989 Nov; 1(2):171-9. PubMed ID: 2488704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The genome of the pseudo T-even bacteriophages, a diverse group that resembles T4.
    Monod C; Repoila F; Kutateladze M; Tétart F; Krisch HM
    J Mol Biol; 1997 Mar; 267(2):237-49. PubMed ID: 9096222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genome of bacteriophage phiKZ of Pseudomonas aeruginosa.
    Mesyanzhinov VV; Robben J; Grymonprez B; Kostyuchenko VA; Bourkaltseva MV; Sykilinda NN; Krylov VN; Volckaert G
    J Mol Biol; 2002 Mar; 317(1):1-19. PubMed ID: 11916376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression, purification, and partial characterization of ADP-ribosyltransferases modA and modB of bacteriophage T4.
    Tiemann B; Depping R; Rüger W
    Gene Expr; 1999; 8(3):187-96. PubMed ID: 10634320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Nucleotide sequence of gene 31 of the T4 bacteriophage].
    Nivinskas RG; Black LW
    Mol Biol (Mosk); 1988; 22(6):1507-16. PubMed ID: 2855254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bipartite bacteriophage T4 SOC and HOC randomized peptide display library: detection and analysis of phage T4 terminase (gp17) and late sigma factor (gp55) interaction.
    Malys N; Chang DY; Baumann RG; Xie D; Black LW
    J Mol Biol; 2002 May; 319(2):289-304. PubMed ID: 12051907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A species barrier between bacteriophages T2 and T4: exclusion, join-copy and join-cut-copy recombination and mutagenesis in the dCTPase genes.
    Gary TP; Colowick NE; Mosig G
    Genetics; 1998 Apr; 148(4):1461-73. PubMed ID: 9560366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Confirmation of the presence of a transcription termination site in a DNA segment downstream from gene 31 of bacteriophage T4].
    Raudonikene AA; Nivinskas RG
    Bioorg Khim; 1990 Aug; 16(8):1141-4. PubMed ID: 2285429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The alpha-glucosyltransferases of bacteriophages T2, T4 and T6. A comparison of their primary structures.
    Gram H; Rüger W
    Mol Gen Genet; 1986 Mar; 202(3):467-70. PubMed ID: 2940438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the autoregulatory pseudoknot within the gene 32 messenger RNA of bacteriophages T2 and T6: a model for a possible family of structurally related RNA pseudoknots.
    Du Z; Giedroc DP; Hoffman DW
    Biochemistry; 1996 Apr; 35(13):4187-98. PubMed ID: 8672455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity.
    Mahichi F; Synnott AJ; Yamamichi K; Osada T; Tanji Y
    FEMS Microbiol Lett; 2009 Jun; 295(2):211-7. PubMed ID: 19453513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity of the gene functions for DNA replication in the T4-like phages.
    Petrov VM; Nolan JM; Bertrand C; Levy D; Desplats C; Krisch HM; Karam JD
    J Mol Biol; 2006 Aug; 361(1):46-68. PubMed ID: 16828113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modular architecture of the T4 phage superfamily: a conserved core genome and a plastic periphery.
    Comeau AM; Bertrand C; Letarov A; Tétart F; Krisch HM
    Virology; 2007 Jun; 362(2):384-96. PubMed ID: 17289101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The kinetic mechanism of formation of the bacteriophage T4 DNA polymerase sliding clamp.
    Young MC; Weitzel SE; von Hippel PH
    J Mol Biol; 1996 Dec; 264(3):440-52. PubMed ID: 8969296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic polymorphism in the T-even bacteriophages.
    Repoila F; Tétart F; Bouet JY; Krisch HM
    EMBO J; 1994 Sep; 13(17):4181-92. PubMed ID: 8076614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of five presumptive protein-coding sequences clustered between the primosome genes, 41 and 61, of bacteriophages T4, T2, and T6.
    Selick HE; Stormo GD; Dyson RL; Alberts BM
    J Virol; 1993 Apr; 67(4):2305-16. PubMed ID: 8383243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.