These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 8054327)
1. Evaluation of fermentability of acid-treated maize husk by rat caecal bacteria in vivo and in vitro. Hara H; Saito Y; Nakashima H; Kiriyama S Br J Nutr; 1994 May; 71(5):719-29. PubMed ID: 8054327 [TBL] [Abstract][Full Text] [Related]
2. Interactive Effects of Dietary Fiber and Lipid Types Modulate the Predicted Production and Absorption of Cecal and Colorectal Short-Chain Fatty Acids in Growing Pigs. Ndou SP; Kiarie E; de Lange CF; Nyachoti CM J Nutr; 2024 Jul; 154(7):2042-2052. PubMed ID: 38795744 [TBL] [Abstract][Full Text] [Related]
3. Functional modulation of caecal fermentation and microbiota in rat by feeding bean husk as a dietary fibre supplement. Myint H; Kishi H; Iwahashi Y; Saburi W; Koike S; Kobayashi Y Benef Microbes; 2018 Dec; 9(6):963-974. PubMed ID: 30208728 [TBL] [Abstract][Full Text] [Related]
4. Rat cecal inocula produce different patterns of short-chain fatty acids than fecal inocula in in vitro fermentations. Monsma DJ; Marlett JA J Nutr; 1995 Oct; 125(10):2463-70. PubMed ID: 7562080 [TBL] [Abstract][Full Text] [Related]
5. Effects of two whole-grain barley varieties on caecal SCFA, gut microbiota and plasma inflammatory markers in rats consuming low- and high-fat diets. Zhong Y; Marungruang N; Fåk F; Nyman M Br J Nutr; 2015 May; 113(10):1558-70. PubMed ID: 25864430 [TBL] [Abstract][Full Text] [Related]
6. The influence of dietary fibre on caecal metabolism in the rat. McKay LF; Eastwood MA Br J Nutr; 1983 Nov; 50(3):679-84. PubMed ID: 6315053 [TBL] [Abstract][Full Text] [Related]
7. Propionic and butyric acids, formed in the caecum of rats fed highly fermentable dietary fibre, are reflected in portal and aortic serum. Jakobsdottir G; Jädert C; Holm L; Nyman ME Br J Nutr; 2013 Nov; 110(9):1565-72. PubMed ID: 23531375 [TBL] [Abstract][Full Text] [Related]
8. Combinations of indigestible carbohydrates affect short-chain fatty acid formation in the hindgut of rats. Henningsson AM; Björck IM; Nyman EM J Nutr; 2002 Oct; 132(10):3098-104. PubMed ID: 12368401 [TBL] [Abstract][Full Text] [Related]
9. Kiwifruit fibre level influences the predicted production and absorption of SCFA in the hindgut of growing pigs using a combined in vivo-in vitro digestion methodology. Montoya CA; Rutherfurd SM; Moughan PJ Br J Nutr; 2016 Apr; 115(8):1317-24. PubMed ID: 26277926 [TBL] [Abstract][Full Text] [Related]
10. Gastrointestinal implications in pigs of wheat and oat fractions. 2. Microbial activity in the gastrointestinal tract. Bach Knudsen KE; Jensen BB; Andersen JO; Hansen I Br J Nutr; 1991 Mar; 65(2):233-48. PubMed ID: 1645993 [TBL] [Abstract][Full Text] [Related]
11. Effects of dietary fibre-rich juice colloids from apple pomace extraction juices on intestinal fermentation products and microbiota in rats. Sembries S; Dongowski G; Jacobasch G; Mehrländer K; Will F; Dietrich H Br J Nutr; 2003 Sep; 90(3):607-15. PubMed ID: 13129467 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the effects of ispaghula and wheat bran on rat caecal and colonic fermentation. Edwards CA; Eastwood MA Gut; 1992 Sep; 33(9):1229-33. PubMed ID: 1330844 [TBL] [Abstract][Full Text] [Related]
13. Influence of starches of low digestibility on the rat caecal microflora. Mallett AK; Bearne CA; Young PJ; Rowland IR; Berry C Br J Nutr; 1988 Nov; 60(3):597-604. PubMed ID: 3219326 [TBL] [Abstract][Full Text] [Related]
14. Short-chain fatty acid formation in the hindgut of rats fed native and fermented oat fibre concentrates. Lambo-Fodje AM; Oste R; Nyman ME Br J Nutr; 2006 Jul; 96(1):47-55. PubMed ID: 16869990 [TBL] [Abstract][Full Text] [Related]
15. Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: use of cannulated pigs and in vitro fermentation. Anguita M; Canibe N; Pérez JF; Jensen BB J Anim Sci; 2006 Oct; 84(10):2766-78. PubMed ID: 16971578 [TBL] [Abstract][Full Text] [Related]
16. In vitro production of short-chain fatty acids by bacterial fermentation of dietary fiber compared with effects of those fibers on hepatic sterol synthesis in rats. Stark AH; Madar Z J Nutr; 1993 Dec; 123(12):2166-73. PubMed ID: 8263612 [TBL] [Abstract][Full Text] [Related]
17. The effect of diet on microfaunal population and function in the caecum of a subterranean naked mole-rat, Heterocephalus glaber. Buffenstein R; Yahav S Br J Nutr; 1991 Mar; 65(2):249-58. PubMed ID: 1645994 [TBL] [Abstract][Full Text] [Related]
18. Fermentation products of sugar-beet fiber by cecal bacteria lower plasma cholesterol concentration in rats. Hara H; Haga S; Kasai T; Kiriyama S J Nutr; 1998 Apr; 128(4):688-93. PubMed ID: 9521629 [TBL] [Abstract][Full Text] [Related]
19. Sugar composition of dietary fibre and short-chain fatty acid production during in vitro fermentation by human bacteria. Salvador V; Cherbut C; Barry JL; Bertrand D; Bonnet C; Delort-Laval J Br J Nutr; 1993 Jul; 70(1):189-97. PubMed ID: 8399101 [TBL] [Abstract][Full Text] [Related]
20. Caecal and faecal short-chain fatty acids and stool output in rats fed on diets containing non-starch polysaccharides. Edwards CA; Eastwood MA Br J Nutr; 1995 May; 73(5):773-81. PubMed ID: 7626595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]