These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8054348)

  • 1. Na/K competitive transport selectivity of (221) C10-cryptand: effect of temperature.
    Mulliert G; Hill M; Loiseau A; Castaing M
    Biochim Biophys Acta; 1994 Aug; 1193(2):263-75. PubMed ID: 8054348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na/K competitive transport selectivity of (221)C10-cryptand: effects of pH and carrier concentration.
    Loiseau A; Hill M; Mulliert G; Castaing M
    Biochim Biophys Acta; 1995 Apr; 1235(1):21-32. PubMed ID: 7718604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of competing Na and K ions by (222) C10-cryptand, an ionizable mobile carrier: effects of pH and temperature.
    Loiseau A; Hill M; René-Corail L; Castaing M
    Biochim Biophys Acta; 1995 Sep; 1238(2):107-17. PubMed ID: 7548125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency, Na+/K+ selectivity and temperature dependence of ion transport through lipid membranes by (221)C10-cryptand, an ionizable mobile carrier.
    Castaing M; Lehn JM
    J Membr Biol; 1987; 97(2):79-95. PubMed ID: 3446819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of alkali cations through thin lipid membranes by (222)C10-cryptand, an ionizable mobile carrier.
    Castaing M; Morel F; Lehn JM
    J Membr Biol; 1986; 89(3):251-67. PubMed ID: 3701842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium transport by an ionizable and a neutral mobile carrier: effects of membrane structure on the apparent activation energy.
    Vareille G; Marion P; Kraus JL; Castaing M
    Biochim Biophys Acta; 1993 Feb; 1146(1):25-37. PubMed ID: 8443224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-dependent effects of cholesterol on sodium transport through lipid membranes by an ionizable mobile carrier.
    Wehrli S; Ramirez C; Kraus JL; Castaing M
    Biochim Biophys Acta; 1992 Jun; 1107(2):319-30. PubMed ID: 1504075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-jump method for studying the fast transport of Na+ by (221) C10-cryptand across lipid membranes.
    Castaing M; Kraus JL; Beaufils P; Ricard J
    Biophys Chem; 1991 Nov; 41(2):203-15. PubMed ID: 1663399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permeability of cryptands through dihexadecyl phosphate bilayer membranes.
    Castaing M; Kraus JL; Ponge C
    Biophys Chem; 1991 Jan; 39(1):17-29. PubMed ID: 2012831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interaction of monovalent cations with the sodium pump of low-potassium goat erythrocytes.
    Cavieres JD; Ellory JC
    J Physiol; 1977 Sep; 271(1):289-318. PubMed ID: 144181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monensin-mediated transports of H+, Na+, K+ and Li+ ions across vesicular membranes: T-jump studies.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1992 Apr; 1106(1):171-7. PubMed ID: 1581330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium transport in opossum kidney cells: effects of Na-selective and K-selective ionizable cryptands, and of valinomycin, FCCP and nystatin.
    Loiseau A; Leroy C; Castaing M
    Biochim Biophys Acta; 1997 Nov; 1330(1):39-49. PubMed ID: 9375811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nigericin-mediated H+, K+ and Na+ transports across vesicular membrane: T-jump studies.
    Prabhananda BS; Ugrankar MM
    Biochim Biophys Acta; 1991 Dec; 1070(2):481-91. PubMed ID: 1764460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrimination between alkali metal cations by yeast. II. Cation interactions in transport.
    Armstrong WM; Rothstein A
    J Gen Physiol; 1967 Mar; 50(4):967-88. PubMed ID: 6034512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium Versus Sodium Selectivity in Monovalent Ion Channel Selectivity Filters.
    Lim C; Dudev T
    Met Ions Life Sci; 2016; 16():325-47. PubMed ID: 26860306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and thermodynamics of ouabain binding by intact turkey erythrocytes: effects of external sodium ion, potassium ion, and temperature.
    Furukawa H; Bilezikian JP; Loeb JN
    J Gen Physiol; 1980 Oct; 76(4):499-516. PubMed ID: 6255063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of rates of H+, Na+ and K+ transport across phospholipid vesicular membrane by the combined action of carbonyl cyanide m-chlorophenylhydrazone and valinomycin: temperature-jump studies.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1995 May; 1235(2):323-35. PubMed ID: 7756342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some effects of trinitrocresolate and valinomycin on Na and K transport across thin lipid bilayer membranes: a steady-state analysis with simultaneous tracer and electrical measurements.
    Ginsburg H; Tosteson MT; Tosteson DC
    J Membr Biol; 1978 Sep; 42(2):153-68. PubMed ID: 702517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interaction of sodium and potassium with the sodium pump in red cells.
    Garay RP; Garrahan PJ
    J Physiol; 1973 Jun; 231(2):297-325. PubMed ID: 4720935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. K+-dependent Na+ transport driven by respiration in Escherichia coli cells and membrane vesicles.
    Verkhovskaya ML; Verkhovsky MI; Wikström M
    Biochim Biophys Acta; 1996 Mar; 1273(3):207-16. PubMed ID: 8616158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.