BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 8054695)

  • 1. [Electron microscopic study of a macroporous calcium phosphate ceramic implanted in an osseous site].
    Grizon F; Filmon R; Chappard D; Rebel A; Basle MF
    Bull Assoc Anat (Nancy); 1994 Mar; 78(240):39-45. PubMed ID: 8054695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in ceramic-bone interface between surface-active ceramics and resorbable ceramics: a study by scanning and transmission electron microscopy.
    Neo M; Kotani S; Fujita Y; Nakamura T; Yamamuro T; Bando Y; Ohtsuki C; Kokubo T
    J Biomed Mater Res; 1992 Feb; 26(2):255-67. PubMed ID: 1569117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human growth hormone locally released in bone sites by calcium-phosphate biomaterial stimulates ceramic bone substitution without systemic effects: a rabbit study.
    Guicheux J; Gauthier O; Aguado E; Pilet P; Couillaud S; Jegou D; Daculsi G; Heymann D
    J Bone Miner Res; 1998 Apr; 13(4):739-48. PubMed ID: 9556073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural study of the A-W GC-bone interface after long-term implantation in rat and human bone.
    Neo M; Nakamura T; Ohtsuki C; Kasai R; Kokubo T; Yamamuro T
    J Biomed Mater Res; 1994 Mar; 28(3):365-72. PubMed ID: 8077251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution.
    Eggli PS; Müller W; Schenk RK
    Clin Orthop Relat Res; 1988 Jul; (232):127-38. PubMed ID: 2838207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apatite formation on three kinds of bioactive material at an early stage in vivo: a comparative study by transmission electron microscopy.
    Neo M; Nakamura T; Ohtsuki C; Kokubo T; Yamamuro T
    J Biomed Mater Res; 1993 Aug; 27(8):999-1006. PubMed ID: 8408128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium phosphate materials containing alumina: Raman spectroscopical, histological, and ultrastructural study.
    Bertoluzza A; Simoni R; Tinti A; Morocutti M; Ottani V; Ruggeri A
    J Biomed Mater Res; 1991 Jan; 25(1):23-38. PubMed ID: 2019610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cellular culture of osteoblasts and fibroblasts on porous calcium-phosphate bone substitutes].
    Chouteau J; Bignon A; Chavassieux P; Chevalier J; Melin M; Fantozzi G; Boivin G; Hartmann D; Carret JP
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Feb; 89(1):44-52. PubMed ID: 12610435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteoclastic resorption of Ca-P biomaterials implanted in rabbit bone.
    Baslé MF; Chappard D; Grizon F; Filmon R; Delecrin J; Daculsi G; Rebel A
    Calcif Tissue Int; 1993 Nov; 53(5):348-56. PubMed ID: 8287324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage.
    Solchaga LA; Dennis JE; Goldberg VM; Caplan AI
    J Orthop Res; 1999 Mar; 17(2):205-13. PubMed ID: 10221837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study.
    Daculsi G; Passuti N; Martin S; Deudon C; Legeros RZ; Raher S
    J Biomed Mater Res; 1990 Mar; 24(3):379-96. PubMed ID: 2318901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Comparative study of bioactive calcium phosphate ceramics after implantation in spongy bone in dogs. Histologic, ultrastructural and electron probe microanalysis].
    Daculsi G; Passuti N; Martin S; Le Nihouannen JC; Brulliard V; Delecrin J; Kerebel B
    Rev Chir Orthop Reparatrice Appar Mot; 1989; 75(2):65-71. PubMed ID: 2740538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BS-SEM evaluation of the tissular interactions between cortical bone and calcium-phosphate covered titanium implants.
    Manzanares MC; Franch J; Carvalho P; Belmonte AM; Tusell J; Franch B; Fernandez JM; Clèries L; Morenza JL
    Bull Group Int Rech Sci Stomatol Odontol; 2001; 43(3):100-8. PubMed ID: 11938587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Ultrastructural examination of cell-mediated degradation of a calcium phosphate ceramic].
    Wenisch S; Stahl JP; Horas U; Kilian O; Heiss C; Schnettler R
    Unfallchirurg; 2003 May; 106(5):387-91. PubMed ID: 12750812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The origin of bone formed in composite grafts of porous calcium phosphate ceramic loaded with marrow cells.
    Goshima J; Goldberg VM; Caplan AI
    Clin Orthop Relat Res; 1991 Aug; (269):274-83. PubMed ID: 1650657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization.
    Daculsi G; LeGeros RZ; Nery E; Lynch K; Kerebel B
    J Biomed Mater Res; 1989 Aug; 23(8):883-94. PubMed ID: 2777831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scanning and transmission electron microscopy, and electron probe analysis of the interface between implants and host bone. Osseo-coalescence versus osseo-integration.
    Daculsi G; LeGeros RZ; Deudon C
    Scanning Microsc; 1990 Jun; 4(2):309-14. PubMed ID: 2402606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resorption of apatite-wollastonite containing glass-ceramic and beta-tricalcium phosphate in vivo.
    Teramoto H; Kawai A; Sugihara S; Yoshida A; Inoue H
    Acta Med Okayama; 2005 Oct; 59(5):201-7. PubMed ID: 16286959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D microenvironment as essential element for osteoinduction by biomaterials.
    Habibovic P; Yuan H; van der Valk CM; Meijer G; van Blitterswijk CA; de Groot K
    Biomaterials; 2005 Jun; 26(17):3565-75. PubMed ID: 15621247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of ultrastructures of the interfaces between four kinds of surface-active ceramic and bone.
    Neo M; Kotani S; Nakamura T; Yamamuro T; Ohtsuki C; Kokubo T; Bando Y
    J Biomed Mater Res; 1992 Nov; 26(11):1419-32. PubMed ID: 1447227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.