These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 8055374)

  • 41. Functional adaptation to loading of a single bone is neuronally regulated and involves multiple bones.
    Sample SJ; Behan M; Smith L; Oldenhoff WE; Markel MD; Kalscheur VL; Hao Z; Miletic V; Muir P
    J Bone Miner Res; 2008 Sep; 23(9):1372-81. PubMed ID: 18410233
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vivo static creep loading of the rat forelimb reduces ulnar structural properties at time-zero and induces damage-dependent woven bone formation.
    Lynch JA; Silva MJ
    Bone; 2008 May; 42(5):942-9. PubMed ID: 18295561
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of loading frequency on mechanically induced bone formation.
    Hsieh YF; Turner CH
    J Bone Miner Res; 2001 May; 16(5):918-24. PubMed ID: 11341337
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Partitioning a daily mechanical stimulus into discrete loading bouts improves the osteogenic response to loading.
    Robling AG; Burr DB; Turner CH
    J Bone Miner Res; 2000 Aug; 15(8):1596-602. PubMed ID: 10934659
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aging changes mechanical loading thresholds for bone formation in rats.
    Turner CH; Takano Y; Owan I
    J Bone Miner Res; 1995 Oct; 10(10):1544-9. PubMed ID: 8686511
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sympathetic nervous system does not mediate the load-induced cortical new bone formation.
    de Souza RL; Pitsillides AA; Lanyon LE; Skerry TM; Chenu C
    J Bone Miner Res; 2005 Dec; 20(12):2159-68. PubMed ID: 16294269
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bone response to in vivo mechanical loading in C3H/HeJ mice.
    Pedersen EA; Akhter MP; Cullen DM; Kimmel DB; Recker RR
    Calcif Tissue Int; 1999 Jul; 65(1):41-6. PubMed ID: 10369732
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The adaptive response of rat tibia to different levels of peak strain and durations of experiment.
    Liu Z; Gao J; Gong H
    Med Eng Phys; 2022 Apr; 102():103785. PubMed ID: 35346433
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cyclooxygenase-2 inhibition delays the attainment of peak woven bone formation following four-point bending in the rat.
    Gregory LS; Forwood MR
    Calcif Tissue Int; 2007 Mar; 80(3):176-83. PubMed ID: 17334881
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Finite-element analysis of the mouse proximal ulna in response to elbow loading.
    Jiang F; Jalali A; Deguchi C; Chen A; Liu S; Kondo R; Minami K; Horiuchi T; Li BY; Robling AG; Chen J; Yokota H
    J Bone Miner Metab; 2019 May; 37(3):419-429. PubMed ID: 30062431
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bone response to alternate-day mechanical loading of the rat tibia.
    Raab-Cullen DM; Akhter MP; Kimmel DB; Recker RR
    J Bone Miner Res; 1994 Feb; 9(2):203-11. PubMed ID: 8140933
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bone-loading response varies with strain magnitude and cycle number.
    Cullen DM; Smith RT; Akhter MP
    J Appl Physiol (1985); 2001 Nov; 91(5):1971-6. PubMed ID: 11641332
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Suppression of prostaglandin synthesis with NS-398 has different effects on endocortical and periosteal bone formation induced by mechanical loading.
    Li J; Burr DB; Turner CH
    Calcif Tissue Int; 2002 Apr; 70(4):320-9. PubMed ID: 12004337
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Establishing the relationship between loading parameters and bone adaptation.
    Tiwari AK; Kumar N
    Med Eng Phys; 2018 Jun; 56():16-26. PubMed ID: 29685858
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparing histological, vascular and molecular responses associated with woven and lamellar bone formation induced by mechanical loading in the rat ulna.
    McKenzie JA; Silva MJ
    Bone; 2011 Feb; 48(2):250-8. PubMed ID: 20849995
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of eldecalcitol on cortical bone response to mechanical loading in rats.
    Yamasaki Y; Nagira K; Osaki M; Nagashima H; Hagino H
    BMC Musculoskelet Disord; 2015 Jun; 16():158. PubMed ID: 26123128
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Parathyroid hormone enhances mechanically induced bone formation, possibly involving L-type voltage-sensitive calcium channels.
    Li J; Duncan RL; Burr DB; Gattone VH; Turner CH
    Endocrinology; 2003 Apr; 144(4):1226-33. PubMed ID: 12639904
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bone's responses to mechanical loading are impaired in type 1 diabetes.
    Parajuli A; Liu C; Li W; Gu X; Lai X; Pei S; Price C; You L; Lu XL; Wang L
    Bone; 2015 Dec; 81():152-160. PubMed ID: 26183251
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Frequency-dependent enhancement of bone formation in murine tibiae and femora with knee loading.
    Zhang P; Tanaka SM; Sun Q; Turner CH; Yokota H
    J Bone Miner Metab; 2007; 25(6):383-91. PubMed ID: 17968490
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Damaging fatigue loading stimulates increases in periosteal vascularity at sites of bone formation in the rat ulna.
    Matsuzaki H; Wohl GR; Novack DV; Lynch JA; Silva MJ
    Calcif Tissue Int; 2007 Jun; 80(6):391-9. PubMed ID: 17551770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.