These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 8055964)
1. The specificity of clostripain from Clostridium histolyticum. Mapping the S' subsites via acyl transfer to amino acid amides and peptides. Ullmann D; Jakubke HD Eur J Biochem; 1994 Aug; 223(3):865-72. PubMed ID: 8055964 [TBL] [Abstract][Full Text] [Related]
2. Role of the S' subsites in serine protease catalysis. Active-site mapping of rat chymotrypsin, rat trypsin, alpha-lytic protease, and cercarial protease from Schistosoma mansoni. Schellenberger V; Turck CW; Rutter WJ Biochemistry; 1994 Apr; 33(14):4251-7. PubMed ID: 8155642 [TBL] [Abstract][Full Text] [Related]
3. Mapping the S' subsites of serine proteases using acyl transfer to mixtures of peptide nucleophiles. Schellenberger V; Turck CW; Hedstrom L; Rutter WJ Biochemistry; 1993 Apr; 32(16):4349-53. PubMed ID: 8476865 [TBL] [Abstract][Full Text] [Related]
4. S' subsite mapping of serine proteases based on fluorescence resonance energy transfer. Grahn S; Kurth T; Ullmann D; Jakubke HD Biochim Biophys Acta; 1999 May; 1431(2):329-37. PubMed ID: 10350609 [TBL] [Abstract][Full Text] [Related]
5. Contributions to the S'-subsite specificity of papain. Schuster M; Kasche V; Jakubke HD Biochim Biophys Acta; 1992 May; 1121(1-2):207-12. PubMed ID: 1599943 [TBL] [Abstract][Full Text] [Related]
6. Nucleophile specificity of subtilisin in an organic solvent with low water content: investigation via acyl transfer reactions. Cerovský V; Jakubke HD Biotechnol Bioeng; 1996 Mar; 49(5):553-8. PubMed ID: 18623617 [TBL] [Abstract][Full Text] [Related]
7. Subsite specificity studies on the unusual cysteine protease clostripain: charged residues in the P3 position indicate a narrow subsite region. Bordusa F; Ullmann D; Jakubke HD Biol Chem; 1997 Oct; 378(10):1193-8. PubMed ID: 9372191 [TBL] [Abstract][Full Text] [Related]
8. The specificity of carboxypeptidase Y may be altered by changing the hydrophobicity of the S'1 binding pocket. Sørensen SB; Breddam K Protein Sci; 1997 Oct; 6(10):2227-32. PubMed ID: 9336845 [TBL] [Abstract][Full Text] [Related]
9. Electrostatic effects in the alpha-chymotrypsin-catalyzed acyl transfer. II. Efficiency of nucleophiles bearing charged groups in various locations. Schellenberger V; Jakubke HD; Kasche V Biochim Biophys Acta; 1991 May; 1078(1):8-11. PubMed ID: 2049385 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the S'-subsite specificity of porcine pancreatic elastase. Schellenberger V; Schellenberger U; Mitin YV; Jakubke HD Eur J Biochem; 1989 Jan; 179(1):161-3. PubMed ID: 2917556 [TBL] [Abstract][Full Text] [Related]
11. Acyl transfer reactions catalyzed by native and modified alpha-chymotrypsin in acetonitrile with low water content. Cerovský V; Jakubke HD Enzyme Microb Technol; 1994 Jul; 16(7):596-601. PubMed ID: 7764990 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the S'-subsite specificity of bovine pancreatic alpha-chymotrypsin via acyl transfer to added nucleophiles. Schellenberger V; Schellenberger U; Mitin YV; Jakubke HD Eur J Biochem; 1990 Jan; 187(1):163-7. PubMed ID: 2298203 [TBL] [Abstract][Full Text] [Related]
13. Specificity of S'1 and S'2 subsites of human tissue kallikrein using the reactive-centre loop of kallistatin: the importance of P'1 and P'2 positions in design of inhibitors. Pimenta DC; Fogaça SE; Melo RL; Juliano L; Juliano MA Biochem J; 2003 May; 371(Pt 3):1021-5. PubMed ID: 12578561 [TBL] [Abstract][Full Text] [Related]
14. Sequence specificities of human fibroblast and neutrophil collagenases. Netzel-Arnett S; Fields GB; Birkedal-Hansen H; Van Wart HE J Biol Chem; 1991 Apr; 266(11):6747-55. PubMed ID: 1849891 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the substrate specificity of the major cysteine protease (cruzipain) from Trypanosoma cruzi using a portion-mixing combinatorial library and fluorogenic peptides. Nery ED; Juliano MA; Meldal M; Svendsen I; Scharfstein J; Walmsley A; Juliano L Biochem J; 1997 Apr; 323 ( Pt 2)(Pt 2):427-33. PubMed ID: 9163334 [TBL] [Abstract][Full Text] [Related]
16. Inhibitors of human heart chymase based on a peptide library. Bastos M; Maeji NJ; Abeles RH Proc Natl Acad Sci U S A; 1995 Jul; 92(15):6738-42. PubMed ID: 7624313 [TBL] [Abstract][Full Text] [Related]
17. The specificity of prolyl endopeptidase from Flavobacterium meningoseptum: mapping the S' subsites by positional scanning via acyl transfer. Bordusa F; Jakubke HD Bioorg Med Chem; 1998 Oct; 6(10):1775-80. PubMed ID: 9839007 [TBL] [Abstract][Full Text] [Related]
18. S'-subsite mapping of endoproteinase Glu/Asp-C from Actinomyces sp. Schuster M; Aaviksaar A; Stepanov VM; Rudenskaya GN; Jakubke HD Biomed Biochim Acta; 1991; 50(2):139-43. PubMed ID: 1877973 [TBL] [Abstract][Full Text] [Related]
19. Peptidyl substrates containing unnatural amino acid at the P'1 position are potent inhibitors of prohormone convertases. Basak A; Schmidt C; Ismail AA; Seidah NG; Chrétien M; Lazure C Int J Pept Protein Res; 1995; 46(3-4):228-37. PubMed ID: 8537176 [TBL] [Abstract][Full Text] [Related]
20. Enzyme-substrate interactions in the hydrolysis of peptide substrates by thermitase, subtilisin BPN', and proteinase K. Brömme D; Peters K; Fink S; Fittkau S Arch Biochem Biophys; 1986 Feb; 244(2):439-46. PubMed ID: 3511847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]