BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8057358)

  • 1. Interactions of wild-type and truncated LevR of Bacillus subtilis with the upstream activating sequence of the levanase operon.
    Martin-Verstraete I; Débarbouillé M; Klier A; Rapoport G
    J Mol Biol; 1994 Aug; 241(2):178-92. PubMed ID: 8057358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutagenesis of the Bacillus subtilis "-12, -24" promoter of the levanase operon and evidence for the existence of an upstream activating sequence.
    Martin-Verstraete I; Débarbouillé M; Klier A; Rapoport G
    J Mol Biol; 1992 Jul; 226(1):85-99. PubMed ID: 1619665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon.
    Martin-Verstraete I; Stülke J; Klier A; Rapoport G
    J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both sigma 54- and phosphotransferase system-dependent regulators.
    Débarbouillé M; Martin-Verstraete I; Klier A; Rapoport G
    Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2212-6. PubMed ID: 1900939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon.
    Stülke J; Martin-Verstraete I; Charrier V; Klier A; Deutscher J; Rapoport G
    J Bacteriol; 1995 Dec; 177(23):6928-36. PubMed ID: 7592487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antagonistic effects of dual PTS-catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR.
    Martin-Verstraete I; Charrier V; Stülke J; Galinier A; Erni B; Rapoport G; Deutscher J
    Mol Microbiol; 1998 Apr; 28(2):293-303. PubMed ID: 9622354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Bacillus subtilis sigL gene encodes an equivalent of sigma 54 from gram-negative bacteria.
    Débarbouillé M; Martin-Verstraete I; Kunst F; Rapoport G
    Proc Natl Acad Sci U S A; 1991 Oct; 88(20):9092-6. PubMed ID: 1924373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RocR, a novel regulatory protein controlling arginine utilization in Bacillus subtilis, belongs to the NtrC/NifA family of transcriptional activators.
    Calogero S; Gardan R; Glaser P; Schweizer J; Rapoport G; Debarbouille M
    J Bacteriol; 1994 Mar; 176(5):1234-41. PubMed ID: 8113162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction and metabolite regulation of levanase synthesis in Bacillus subtilis.
    Martin I; Debarbouille M; Klier A; Rapoport G
    J Bacteriol; 1989 Apr; 171(4):1885-92. PubMed ID: 2495266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Bacillus subtilis mannose regulator, ManR, a DNA-binding protein regulated by HPr and its cognate PTS transporter ManP.
    Wenzel M; Altenbuchner J
    Mol Microbiol; 2013 May; 88(3):562-76. PubMed ID: 23551403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the Bacillus subtilis levanase gene in Escherichia coli and Saccharomyces cerevisiae.
    Wanker E; Schörgendorfer K; Schwab H
    J Biotechnol; 1991 May; 18(3):243-54. PubMed ID: 1367531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The major dimerization determinants of the nitrogen regulatory protein NTRC from enteric bacteria lie in its carboxy-terminal domain.
    Klose KE; North AK; Stedman KM; Kustu S
    J Mol Biol; 1994 Aug; 241(2):233-45. PubMed ID: 8057363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a novel endo-levanase and its gene from Bacillus sp. L7.
    Miasnikov AN
    FEMS Microbiol Lett; 1997 Sep; 154(1):23-8. PubMed ID: 9297817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 23911 bp region of the Bacillus subtilis genome comprising genes located upstream and downstream of the lev operon.
    Parro V; Román MS; Galindo I; Purnelle B; Bolotin A; Sorokin A; Mellado RP
    Microbiology (Reading); 1997 Apr; 143 ( Pt 4)():1321-1326. PubMed ID: 9141695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon.
    Albano M; Breitling R; Dubnau DA
    J Bacteriol; 1989 Oct; 171(10):5386-404. PubMed ID: 2507524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacillus subtilis PhoP binds to the phoB tandem promoter exclusively within the phosphate starvation-inducible promoter.
    Liu W; Hulett FM
    J Bacteriol; 1997 Oct; 179(20):6302-10. PubMed ID: 9335276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon.
    Martin-Verstraete I; Débarbouillé M; Klier A; Rapoport G
    J Mol Biol; 1990 Aug; 214(3):657-71. PubMed ID: 2117666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of DNA sequences involved in regulating Bacillus subtilis glnRA expression by the nitrogen source.
    Schreier HJ; Rostkowski CA; Nomellini JF; Hirschi KD
    J Mol Biol; 1991 Jul; 220(2):241-53. PubMed ID: 1677426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a DNA binding region in GerE from Bacillus subtilis.
    Crater DL; Moran CP
    J Bacteriol; 2001 Jul; 183(14):4183-9. PubMed ID: 11418558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The competence transcription factor of Bacillus subtilis recognizes short A/T-rich sequences arranged in a unique, flexible pattern along the DNA helix.
    Hamoen LW; Van Werkhoven AF; Bijlsma JJ; Dubnau D; Venema G
    Genes Dev; 1998 May; 12(10):1539-50. PubMed ID: 9585513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.