These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8057531)

  • 1. A possibility that the ATP-sensitive potassium channel in coronary artery has a high-affinity internal binding site for tetraalkylammonium.
    Orito K; Yanagisawa T; Taira N
    Jpn J Pharmacol; 1994 Apr; 64(4):297-301. PubMed ID: 8057531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Block of calcium-activated potassium channels in mammalian arterial myocytes by tetraethylammonium ions.
    Langton PD; Nelson MT; Huang Y; Standen NB
    Am J Physiol; 1991 Mar; 260(3 Pt 2):H927-34. PubMed ID: 1900393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder.
    Bonev AD; Nelson MT
    Am J Physiol; 1993 May; 264(5 Pt 1):C1190-200. PubMed ID: 8498480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoplasmic calcium and the relaxation of canine coronary arterial smooth muscle produced by cromakalim, pinacidil and nicorandil.
    Yanagisawa T; Teshigawara T; Taira N
    Br J Pharmacol; 1990 Sep; 101(1):157-65. PubMed ID: 2149290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-sensitive K+ channels from aortic smooth muscle incorporated into planar lipid bilayers.
    Kovacs RJ; Nelson MT
    Am J Physiol; 1991 Aug; 261(2 Pt 2):H604-9. PubMed ID: 1715132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ATP-sensitive potassium conductance in rabbit arterial endothelial cells.
    Katnik C; Adams DJ
    J Physiol; 1995 Jun; 485 ( Pt 3)(Pt 3):595-606. PubMed ID: 7562603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of potassium channel openers and blockers in canine atrial muscle.
    Yanagisawa T; Hashimoto H; Taira N
    Br J Pharmacol; 1989 Jul; 97(3):753-62. PubMed ID: 2527073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple blocking mechanisms of ATP-sensitive potassium channels of frog skeletal muscle by tetraethylammonium ions.
    Davies NW; Spruce AE; Standen NB; Stanfield PR
    J Physiol; 1989 Jun; 413():31-48. PubMed ID: 2600853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block.
    Rusko J; Tanzi F; van Breemen C; Adams DJ
    J Physiol; 1992 Sep; 455():601-21. PubMed ID: 1484364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different mechanisms of relaxation of pig coronary artery to bradykinin and cromakalim are distinguished by potassium channel blockers.
    Cowan CL; Cohen RA
    J Pharmacol Exp Ther; 1992 Jan; 260(1):248-53. PubMed ID: 1731041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-activity relationship of quaternary ammonium ions at the external tetraethylammonium binding site of cloned potassium channels.
    Jarolimek W; Soman KV; Alam M; Brown AM
    Mol Pharmacol; 1996 Jan; 49(1):165-71. PubMed ID: 8569703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single channel and whole-cell K-currents evoked by levcromakalim in smooth muscle cells from the rabbit portal vein.
    Beech DJ; Zhang H; Nakao K; Bolton TB
    Br J Pharmacol; 1993 Oct; 110(2):583-90. PubMed ID: 8242233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-activity relationship of quaternary ion antagonism of levcromakalim-induced relaxation in pig coronary artery.
    Piekarska AE; McPherson GA
    Eur J Pharmacol; 1997 Mar; 322(1):37-44. PubMed ID: 9088868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internal block of human heart sodium channels by symmetrical tetra-alkylammoniums.
    O'Leary ME; Horn R
    J Gen Physiol; 1994 Sep; 104(3):507-22. PubMed ID: 7807059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium channel blockade and halothane vasodilation in conducting and resistance coronary arteries.
    Larach DR; Schuler HG
    J Pharmacol Exp Ther; 1993 Oct; 267(1):72-81. PubMed ID: 8229789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of vasodilator effects of the potassium channel openers NIP-121 and levcromakalim in dogs and rats.
    Yamashita T; Masuda Y; Kawamura N; Fujikura N; Tanaka S
    Jpn J Pharmacol; 1995 Jun; 68(2):145-52. PubMed ID: 7563971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of internal and external tetraethylammonium block in four homologous K+ channels.
    Taglialatela M; Vandongen AM; Drewe JA; Joho RH; Brown AM; Kirsch GE
    Mol Pharmacol; 1991 Aug; 40(2):299-307. PubMed ID: 1875913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The antitussive effect of cromakalim in rats is not associated with adenosine triphosphate sensitive K+ channels.
    Kamei J; Iwamoto Y; Narita M; Suzuki T; Misawa M; Kasuya Y
    Res Commun Chem Pathol Pharmacol; 1993 May; 80(2):201-10. PubMed ID: 8391711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti- and proconvulsive actions of levcromakalim, an opener of ATP-sensitive K+ channel, in the model of hippocampus-generating partial seizures in rats.
    Katsumori H; Ito Y; Higashida H; Hashii M; Minabe Y
    Eur J Pharmacol; 1996 Sep; 311(1):37-44. PubMed ID: 8884234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of glibenclamide-sensitive K+ current by nucleotide phosphates in isolated rabbit pulmonary myocytes.
    Clapp LH
    Cardiovasc Res; 1995 Sep; 30(3):460-8. PubMed ID: 7585838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.