These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8057798)

  • 1. Diffusion and relaxation mapping of cartilage-bone plugs and excised disks using microscopic magnetic resonance imaging.
    Xia Y; Farquhar T; Burton-Wurster N; Ray E; Jelinski LW
    Magn Reson Med; 1994 Mar; 31(3):273-82. PubMed ID: 8057798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of interstitial water content of articular cartilage with T1 relaxation.
    Berberat JE; Nissi MJ; Jurvelin JS; Nieminen MT
    Magn Reson Imaging; 2009 Jun; 27(5):727-32. PubMed ID: 19056195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative measurement of T2, T1ρ and T1 relaxation times in articular cartilage and cartilage-bone interface by SE and UTE imaging at microscopic resolution.
    Mahar R; Batool S; Badar F; Xia Y
    J Magn Reson; 2018 Dec; 297():76-85. PubMed ID: 30366222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of cartilage laminae in MRI.
    Xia Y; Farquhar T; Burton-Wurster N; Lust G
    J Magn Reson Imaging; 1997; 7(5):887-94. PubMed ID: 9307916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-diffusion monitors degraded cartilage.
    Xia Y; Farquhar T; Burton-Wurster N; Vernier-Singer M; Lust G; Jelinski LW
    Arch Biochem Biophys; 1995 Nov; 323(2):323-8. PubMed ID: 7487094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of T2 Relaxation Times for Normal Canine Knee Articular Cartilage by T2 Mapping Using 1.5-T Magnetic Resonance Imaging.
    Matsui A; Shimizu M; Beale B; Takahashi F; Yamaguchi S
    Vet Comp Orthop Traumatol; 2017 Nov; 30(6):391-397. PubMed ID: 29202501
    [No Abstract]   [Full Text] [Related]  

  • 7. Water distribution patterns inside bovine articular cartilage as visualized by 1H magnetic resonance imaging.
    Shapiro EM; Borthakur A; Kaufman JH; Leigh JS; Reddy R
    Osteoarthritis Cartilage; 2001 Aug; 9(6):533-8. PubMed ID: 11520167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage.
    Welsch GH; Mamisch TC; Hughes T; Zilkens C; Quirbach S; Scheffler K; Kraff O; Schweitzer ME; Szomolanyi P; Trattnig S
    Invest Radiol; 2008 Sep; 43(9):619-26. PubMed ID: 18708855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental issues in the measurement of multi-component relaxation times in articular cartilage by microscopic MRI.
    Wang N; Xia Y
    J Magn Reson; 2013 Oct; 235():15-25. PubMed ID: 23916991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance imaging of articular cartilage: ex vivo study on normal cartilage correlated with magnetic resonance microscopy.
    Cova M; Toffanin R; Frezza F; Pozzi-Mucelli M; Mlynárik V; Pozzi-Mucelli RS; Vittur F; Dalla-Palma L
    Eur Radiol; 1998; 8(7):1130-6. PubMed ID: 9724424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-components of T2 relaxation in ex vivo cartilage and tendon.
    Zheng S; Xia Y
    J Magn Reson; 2009 Jun; 198(2):188-96. PubMed ID: 19269868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-field one-dimensional and direction-dependent relaxation imaging of bovine articular cartilage.
    Rössler E; Mattea C; Mollova A; Stapf S
    J Magn Reson; 2011 Dec; 213(1):112-8. PubMed ID: 21962910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of residual dipolar interaction in cartilage by spin-lock technique.
    Akella SV; Regatte RR; Wheaton AJ; Borthakur A; Reddy R
    Magn Reson Med; 2004 Nov; 52(5):1103-9. PubMed ID: 15508163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MR-microscopic visualization of anisotropic internal cartilage structures using the magic angle technique.
    Gründer W; Wagner M; Werner A
    Magn Reson Med; 1998 Mar; 39(3):376-82. PubMed ID: 9498593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying NMR relaxation correlation and exchange in articular cartilage with time domain analysis.
    Mailhiot SE; Zong F; Maneval JE; June RK; Galvosas P; Seymour JD
    J Magn Reson; 2018 Feb; 287():82-90. PubMed ID: 29306110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological and Quantitative 7 T MRI of Hip Cartilage Transplants in Comparison to 3 T-Initial Experiences.
    Lazik-Palm A; Kraff O; Johst S; Quick HH; Ladd ME; Geis C; Körsmeier K; Landgraeber S; Theysohn JM
    Invest Radiol; 2016 Sep; 51(9):552-9. PubMed ID: 27257866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity of cartilage laminae in MR imaging.
    Xia Y
    J Magn Reson Imaging; 2000 Jun; 11(6):686-93. PubMed ID: 10862069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparison between pig lumbar zypapophyseal joint cartilage acquired from multiple magnetic resonance image sequences and gross specimens].
    Liao H; Yu W; Wang W; Liao Y
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2010 Oct; 35(10):1064-72. PubMed ID: 21051831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of delayed gadolinium-enhanced magnetic resonance imaging of cartilage and T2 mapping for quantifying distal metacarpus/metatarsus cartilage thickness in Thoroughbred racehorses.
    Carstens A; Kirberger RM; Dahlberg LE; Prozesky L; Fletcher L; Lammentausta E
    Vet Radiol Ultrasound; 2013; 54(2):139-48. PubMed ID: 23279707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison study of intraarticular and intravenous gadolinium-enhanced magnetic resonance imaging of cartilage in a canine model.
    Kwack KS; Cho JH; Kim M MS; Yoon CS; Yoon YS; Choi JW; Kwon JW; Min BH; Sun JS; Kim SY
    Acta Radiol; 2008 Feb; 49(1):65-74. PubMed ID: 17963083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.