These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8057803)

  • 1. Scalar coupling and zero-quantum coherence relaxation in STEAM: implications for spectral editing of lactate.
    Kingsley PB
    Magn Reson Med; 1994 Mar; 31(3):315-9. PubMed ID: 8057803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pitfall associated with lactate detection using stimulated-echo proton spectroscopy.
    Sotak CH; Alger JR
    Magn Reson Med; 1991 Feb; 17(2):533-8. PubMed ID: 2062220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of J coupling and T2 Relaxation in Assessing of Methyl Lactate Signal using PRESS Sequence MR Spectroscopy.
    Isobe T; Matsumura A; Anno I; Kawamura H; Muraishi H; Umeda T; Nose T
    Igaku Butsuri; 2005; 25(2):68-74. PubMed ID: 16135894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo tumor lactate relaxation measurements by selective multiple-quantum-coherence (Sel-MQC) transfer.
    Muruganandham M; Koutcher JA; Pizzorno G; He Q
    Magn Reson Med; 2004 Oct; 52(4):902-6. PubMed ID: 15389963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Band-selective spin echoes for in vivo localized 1H NMR spectroscopy.
    Shungu DC; Glickson JD
    Magn Reson Med; 1994 Sep; 32(3):277-84. PubMed ID: 7984059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative evaluation of the lactate signal loss and its spatial dependence in press localized (1)H NMR spectroscopy.
    Jung WI; Bunse M; Lutz O
    J Magn Reson; 2001 Oct; 152(2):203-13. PubMed ID: 11567573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A selective excitation/B0 gradient technique for high-resolution 1H NMR studies of metabolites via zero-quantum coherence and polarization transfer.
    Doddrell DM; Brereton IM
    NMR Biomed; 1989 Jun; 2(1):39-43. PubMed ID: 2641291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of symmetric-sweep spectral-spatial RF pulses for spectral editing.
    Cunningham CH; Vigneron DB; Chen AP; Xu D; Hurd RE; Sailasuta N; Pauly JM
    Magn Reson Med; 2004 Jul; 52(1):147-53. PubMed ID: 15236378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-phase simultaneous spectral editing of lactate and alanine with suppression of J-coupled lipids by the modified selective multiple quantum coherence sequences.
    Lee SC; Arias-Mendoza F; Chawla S; Nath K; Glickson JD
    Magn Reson Imaging; 2022 Dec; 94():127-143. PubMed ID: 36089181
    [No Abstract]   [Full Text] [Related]  

  • 10. Longitudinal spin-order-based pulse sequence for lactate editing.
    Reddy R; Subramanian VH; Clark BJ; Leigh JS
    Magn Reson Med; 1991 Jun; 19(2):477-82. PubMed ID: 1881337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The unequivocal determination of lactic acid using a one-dimensional zero-quantum coherence-transfer technique.
    Doddrell DM; Brereton IM; Moxon LN; Galloway GJ
    Magn Reson Med; 1989 Jan; 9(1):132-8. PubMed ID: 2709991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion-weighted stimulated echo acquisition mode (DW-STEAM) MR spectroscopy to measure fat unsaturation in regions with low proton-density fat fraction.
    Ruschke S; Kienberger H; Baum T; Kooijman H; Settles M; Haase A; Rychlik M; Rummeny EJ; Karampinos DC
    Magn Reson Med; 2016 Jan; 75(1):32-41. PubMed ID: 25753506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of slice-selective excitation/refocusing in localized spectral editing with gradient-selected double-quantum coherence transfer.
    Lei H; Dunn J
    J Magn Reson; 2001 May; 150(1):17-25. PubMed ID: 11330978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral editing with adiabatic pulses.
    de Graaf RA; Luo Y; Terpstra M; Garwood M
    J Magn Reson B; 1995 Nov; 109(2):184-93. PubMed ID: 7582600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Echo time optimization for J-difference editing of glutathione at 3T.
    Chan KL; Puts NA; Snoussi K; Harris AD; Barker PB; Edden RA
    Magn Reson Med; 2017 Feb; 77(2):498-504. PubMed ID: 26918659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1H homonuclear editing of rat brain using semiselective pulses.
    Hetherington HP; Avison MJ; Shulman RG
    Proc Natl Acad Sci U S A; 1985 May; 82(10):3115-8. PubMed ID: 2987910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homonuclear J-refocused spectral editing technique for quantification of glutamine and glutamate by 1H NMR spectroscopy.
    Lee HK; Yaman A; Nalcioglu O
    Magn Reson Med; 1995 Aug; 34(2):253-9. PubMed ID: 7476085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton detection of choline and lactate in EMT6 tumors by spin-echo-enhanced selective multiple-quantum-coherence transfer.
    He Q; Bhujwalla ZM; Glickson JD
    J Magn Reson B; 1996 Jul; 112(1):18-25. PubMed ID: 8661302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative time- and frequency-domain analysis of the two-pulse COSY revamped by asymmetric Z-gradient echo detection NMR experiment: Theoretical and experimental aspects, time-zero data truncation artifacts, and radiation damping.
    Kirsch S; Hull WE
    J Chem Phys; 2008 Jul; 129(4):044505. PubMed ID: 18681658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating homonuclear polarization transfer into PRESS for proton spectral editing: illustration with lactate and glutathione.
    Yahya A; Gino Fallone B
    J Magn Reson; 2007 Sep; 188(1):111-21. PubMed ID: 17638584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.