These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 8058376)

  • 1. [Intracellular oxidative-reductive processes in tissues in hyperthermia].
    Seferova RI; Manenkova ID; Avetisova NL
    Patol Fiziol Eksp Ter; 1993; (2):25-7. PubMed ID: 8058376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The effect of ionol on oxidative-reductive processes in the kidney during heat stroke].
    Seferova RI
    Patol Fiziol Eksp Ter; 1989; (5):32-4. PubMed ID: 2616212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Systemic and regional hemodynamics in alert rats with increasing hyperthermia].
    Sultanov GF; Amannepesov K; Dugin SF; Gorodetskaia EA; Agalieva LD; Medvedev OS
    Patol Fiziol Eksp Ter; 1993; (2):23-5. PubMed ID: 8058375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood flow in normal tissues and tumors during hyperthermia.
    Song CW; Rhee JG; Levitt SH
    J Natl Cancer Inst; 1980 Jan; 64(1):119-24. PubMed ID: 6928036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A physiologically relevant hyperthermia selectively activates constitutive hsp70 in H9c2 cardiac myoblasts and confers oxidative protection.
    Su CY; Chong KY; Chen J; Ryter S; Khardori R; Lai CC
    J Mol Cell Cardiol; 1999 Apr; 31(4):845-55. PubMed ID: 10329212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats.
    Peterside IE; Selak MA; Simmons RA
    Am J Physiol Endocrinol Metab; 2003 Dec; 285(6):E1258-66. PubMed ID: 14607783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ability of cytosolic malate dehydrogenase and lactate dehydrogenase to increase the ratio of NADPH to NADH oxidation by cytosolic glycerol-3-phosphate dehydrogenase.
    Fahien LA; Laboy JI; Din ZZ; Prabhakar P; Budker T; Chobanian M
    Arch Biochem Biophys; 1999 Apr; 364(2):185-94. PubMed ID: 10190973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The redox switch/redox coupling hypothesis.
    Cerdán S; Rodrigues TB; Sierra A; Benito M; Fonseca LL; Fonseca CP; García-Martín ML
    Neurochem Int; 2006; 48(6-7):523-30. PubMed ID: 16530294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Type-2 astrocytes have much greater susceptibility to heat stress than type-1 astrocytes.
    Juurlink BH
    J Neurosci Res; 1994 Jun; 38(2):196-201. PubMed ID: 8078104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat shock and the activation of AP-1 and inhibition of NF-kappa B DNA-binding activity: possible role of intracellular redox status.
    Mattson D; Bradbury CM; Bisht KS; Curry HA; Spitz DR; Gius D
    Int J Hyperthermia; 2004 Mar; 20(2):224-33. PubMed ID: 15195516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of short-term thermal loads on tissue respiration of skeletal muscles and internal organs of chickens during hypokinesia].
    Talipov MS; Bogoiavlenskaia ON
    Kosm Biol Aviakosm Med; 1985; 19(3):60-4. PubMed ID: 3928963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal instability of rat muscle sarcoplasmic reticulum Ca(2+)-ATPase function.
    Schertzer JD; Green HJ; Tupling AR
    Am J Physiol Endocrinol Metab; 2002 Oct; 283(4):E722-8. PubMed ID: 12217889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia-induced upregulation of eNOS gene expression is redox-sensitive: a comparison between hypoxia and inhibitors of cell metabolism.
    Hoffmann A; Gloe T; Pohl U
    J Cell Physiol; 2001 Jul; 188(1):33-44. PubMed ID: 11382920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Influence of biophysical factors on redox processes and biological oxidation. 20. Tissue temperatures under ultrasonic administration].
    Belewa-Stajkowa R
    Strahlentherapie; 1975 Feb; 149(2):219-24. PubMed ID: 1135893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Impairment of energy metabolism in rabbit tissues during ammonia toxicosis].
    Makarenko ON; Mel'nichuk DA; Skorik LV
    Ukr Biokhim Zh (1978); 1989; 61(6):94-8. PubMed ID: 2631327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Modeling of processes of heat transfer in whole-body hyperthermia].
    Kinsht DN
    Biofizika; 2006; 51(4):738-42. PubMed ID: 16909854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress during stressful heat exposure and recovery in the North Sea eelpout Zoarces viviparus L.
    Heise K; Puntarulo S; Nikinmaa M; Abele D; Pörtner HO
    J Exp Biol; 2006 Jan; 209(Pt 2):353-63. PubMed ID: 16391357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ambient temperatures ranging from cold to heat on thermoregulation in conscious MK801-treated rats.
    Canini F; Bourdon L; Bittel J
    Can J Physiol Pharmacol; 2003 Oct; 81(10):959-65. PubMed ID: 14608413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain cooling causes attenuation of cerebral oxidative stress, systemic inflammation, activated coagulation, and tissue ischemia/injury during heatstroke.
    Hsu SF; Niu KC; Lin CL; Lin MT
    Shock; 2006 Aug; 26(2):210-20. PubMed ID: 16878031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoprotective mechanism of heat shock protein 70 against hypoxia/reoxygenation injury.
    Kawana K; Miyamoto Y; Tanonaka K; Han-no Y; Yoshida H; Takahashi M; Takeo S
    J Mol Cell Cardiol; 2000 Dec; 32(12):2229-37. PubMed ID: 11112998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.