These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 8058648)
1. Chemical pathways of peptide degradation. VI. Effect of the primary sequence on the pathways of degradation of aspartyl residues in model hexapeptides. Oliyai C; Borchardt RT Pharm Res; 1994 May; 11(5):751-8. PubMed ID: 8058648 [TBL] [Abstract][Full Text] [Related]
2. Chemical pathways of peptide degradation. IV. Pathways, kinetics, and mechanism of degradation of an aspartyl residue in a model hexapeptide. Oliyai C; Borchardt RT Pharm Res; 1993 Jan; 10(1):95-102. PubMed ID: 8430066 [TBL] [Abstract][Full Text] [Related]
3. Chemical pathways of peptide degradation. III. Effect of primary sequence on the pathways of deamidation of asparaginyl residues in hexapeptides. Patel K; Borchardt RT Pharm Res; 1990 Aug; 7(8):787-93. PubMed ID: 2235875 [TBL] [Abstract][Full Text] [Related]
4. Chemical pathways of peptide degradation. II. Kinetics of deamidation of an asparaginyl residue in a model hexapeptide. Patel K; Borchardt RT Pharm Res; 1990 Jul; 7(7):703-11. PubMed ID: 2395797 [TBL] [Abstract][Full Text] [Related]
5. Identification of degradation products of aspartyl tripeptides by capillary electrophoresis-tandem mass spectrometry. De Boni S; Neusüss C; Pelzing M; Scriba GK Electrophoresis; 2003 Mar; 24(5):874-82. PubMed ID: 12627450 [TBL] [Abstract][Full Text] [Related]
6. Capillary electrophoretic study of the degradation pathways and kinetics of the aspartyl model tetrapeptide Gly-Phe-Asp-GlyOH in alkaline solution. Brückner C; Imhof D; Scriba GK J Pharm Biomed Anal; 2013 Mar; 76():96-103. PubMed ID: 23298912 [TBL] [Abstract][Full Text] [Related]
7. Capillary electrophoresis analysis of hydrolysis, isomerization and enantiomerization of aspartyl model tripeptides in acidic and alkaline solution. De Boni S; Scriba GK J Pharm Biomed Anal; 2007 Jan; 43(1):49-56. PubMed ID: 16846713 [TBL] [Abstract][Full Text] [Related]
8. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. Geiger T; Clarke S J Biol Chem; 1987 Jan; 262(2):785-94. PubMed ID: 3805008 [TBL] [Abstract][Full Text] [Related]
9. The effects of a histidine residue on the C-terminal side of an asparaginyl residue on the rate of deamidation using model pentapeptides. Goolcharran C; Stauffer LL; Cleland JL; Borchardt RT J Pharm Sci; 2000 Jun; 89(6):818-25. PubMed ID: 10824141 [TBL] [Abstract][Full Text] [Related]
10. Factors affecting cleavage at aspartic residues in model decapeptides. Li N; Fort F; Kessler K; Wang W J Pharm Biomed Anal; 2009 Aug; 50(1):73-8. PubMed ID: 19395214 [TBL] [Abstract][Full Text] [Related]
11. The role of the cyclic imide in alternate degradation pathways for asparagine-containing peptides and proteins. Dehart MP; Anderson BD J Pharm Sci; 2007 Oct; 96(10):2667-85. PubMed ID: 17518358 [TBL] [Abstract][Full Text] [Related]
12. Effect of conformation on the conversion of cyclo-(1,7)-Gly-Arg-Gly-Asp-Ser-Pro-Asp-Gly-OH to its cyclic imide degradation product. Bogdanowich-Knipp SJ; Jois SD; Siahaan TJ J Pept Res; 1999 Jul; 54(1):43-53. PubMed ID: 10448969 [TBL] [Abstract][Full Text] [Related]
13. Effect of adjacent histidine and cysteine residues on the spontaneous degradation of asparaginyl- and aspartyl-containing peptides. Brennan TV; Clarke S Int J Pept Protein Res; 1995 Jun; 45(6):547-53. PubMed ID: 7558585 [TBL] [Abstract][Full Text] [Related]
14. Hydrolytic cleavage of pyroglutamyl-peptide bond. II. Effects of amino acid residue neighboring the pGlu moiety. Saito S; Ohki K; Sakura N; Hashimoto T Biol Pharm Bull; 1996 May; 19(5):768-70. PubMed ID: 8741593 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of the competitive reactions of isomerization and peptide bond cleavage at l-α- and d-β-aspartyl residues in an αA-crystallin fragment. Aki K; Okamura E J Pept Sci; 2017 Jan; 23(1):28-37. PubMed ID: 27905156 [TBL] [Abstract][Full Text] [Related]
16. Chemical pathways of peptide degradation. VII. Solid state chemical instability of an aspartyl residue in a model hexapeptide. Oliyai C; Patel JP; Carr L; Borchardt RT Pharm Res; 1994 Jun; 11(6):901-8. PubMed ID: 7937533 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of aspartic acid isomerization and enantiomerization in model aspartyl tripeptides under forced conditions. Conrad U; Fahr A; Scriba GK J Pharm Sci; 2010 Oct; 99(10):4162-73. PubMed ID: 20737625 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of stereoisomers and isoforms of a tryptic heptapeptide fragment of human growth hormone and analysis by reverse-phase HPLC and capillary electrophoresis. Vinther A; Holm A; Høeg-Jensen T; Jespersen AM; Klausen NK; Christensen T; Sørensen HH Eur J Biochem; 1996 Jan; 235(1-2):304-9. PubMed ID: 8631346 [TBL] [Abstract][Full Text] [Related]
19. Isomerization and epimerization of the aspartyl tetrapeptide Ala-Phe-Asp-GlyOH at pH 10-A CE study. Brückner C; Bunz SC; Imhof D; Neusüss C; Scriba GK Electrophoresis; 2013 Sep; 34(18):2666-73. PubMed ID: 23533053 [TBL] [Abstract][Full Text] [Related]
20. Chemical Mimics of Aspartate-Directed Proteases: Predictive and Strictly Specific Hydrolysis of a Globular Protein at Asp-X Sequence Promoted by Polyoxometalate Complexes Rationalized by a Combined Experimental and Theoretical Approach. Ly HGT; Mihaylov TT; Proost P; Pierloot K; Harvey JN; Parac-Vogt TN Chemistry; 2019 Nov; 25(63):14370-14381. PubMed ID: 31469197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]