BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 8058767)

  • 1. A functional anatomical study of associative learning in humans.
    Molchan SE; Sunderland T; McIntosh AR; Herscovitch P; Schreurs BG
    Proc Natl Acad Sci U S A; 1994 Aug; 91(17):8122-6. PubMed ID: 8058767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lateralization and behavioral correlation of changes in regional cerebral blood flow with classical conditioning of the human eyeblink response.
    Schreurs BG; McIntosh AR; Bahro M; Herscovitch P; Sunderland T; Molchan SE
    J Neurophysiol; 1997 Apr; 77(4):2153-63. PubMed ID: 9114262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of scopolamine on changes in regional cerebral blood flow during classical conditioning of the human eyeblink response.
    Bahro M; Molchan SE; Sunderland T; Herscovitch P; Schreurs BG
    Neuropsychobiology; 1999 May; 39(4):187-95. PubMed ID: 10343183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional mapping of human learning: a positron emission tomography activation study of eyeblink conditioning.
    Blaxton TA; Zeffiro TA; Gabrieli JD; Bookheimer SY; Carrillo MC; Theodore WH; Disterhoft JF
    J Neurosci; 1996 Jun; 16(12):4032-40. PubMed ID: 8656296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional anatomy of human eyeblink conditioning determined with regional cerebral glucose metabolism and positron-emission tomography.
    Logan CG; Grafton ST
    Proc Natl Acad Sci U S A; 1995 Aug; 92(16):7500-4. PubMed ID: 7638220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of prefrontal cortex in relation to awareness in sensory learning.
    McIntosh AR; Rajah MN; Lobaugh NJ
    Science; 1999 May; 284(5419):1531-3. PubMed ID: 10348741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemodynamic responses in human multisensory and auditory association cortex to purely visual stimulation.
    Meyer M; Baumann S; Marchina S; Jancke L
    BMC Neurosci; 2007 Feb; 8():14. PubMed ID: 17284307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns of regional brain activation associated with different forms of motor learning.
    Ghilardi M; Ghez C; Dhawan V; Moeller J; Mentis M; Nakamura T; Antonini A; Eidelberg D
    Brain Res; 2000 Jul; 871(1):127-45. PubMed ID: 10882792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural substrates of eyeblink conditioning: acquisition and retention.
    Christian KM; Thompson RF
    Learn Mem; 2003; 10(6):427-55. PubMed ID: 14657256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eyeblink conditioning in healthy adults: a positron emission tomography study.
    Parker KL; Andreasen NC; Liu D; Freeman JH; Ponto LL; O'Leary DS
    Cerebellum; 2012 Dec; 11(4):946-56. PubMed ID: 22430943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limited impairments of associative learning in a mouse model of accelerated senescence.
    Yang Y; Wu GY; Li X; Huang H; Hu B; Yao J; Wu B; Sui JF
    Behav Brain Res; 2013 Nov; 257():140-7. PubMed ID: 24076384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Associative effects of Pavlovian differential inhibition of behaviour.
    Jones D; Gonzalez-Lima F
    Eur J Neurosci; 2001 Dec; 14(11):1915-27. PubMed ID: 11860486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological memory in primary auditory cortex: characteristics and mechanisms.
    Weinberger NM
    Neurobiol Learn Mem; 1998; 70(1-2):226-51. PubMed ID: 9753599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The human entorhinal cortex participates in associative memory.
    Klingberg T; Roland PE; Kawashima R
    Neuroreport; 1994 Dec; 6(1):57-60. PubMed ID: 7703429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetic stimulation of mPFC pyramidal neurons as a conditioned stimulus supports associative learning in rats.
    Wu GY; Liu GL; Zhang HM; Chen C; Liu SL; Feng H; Sui JF
    Sci Rep; 2015 May; 5():10065. PubMed ID: 25973929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fear conditioning and brain activity: a positron emission tomography study in humans.
    Fischer H; Andersson JL; Furmark T; Fredrikson M
    Behav Neurosci; 2000 Aug; 114(4):671-80. PubMed ID: 10959525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale functional connectivity in associative learning: interrelations of the rat auditory, visual, and limbic systems.
    Mcintosh AR; Gonzalez-Lima F
    J Neurophysiol; 1998 Dec; 80(6):3148-62. PubMed ID: 9862913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of prefrontal cortex during eyeblink conditioning as a function of age.
    Schreurs BG; Bahro M; Molchan SE; Sunderland T; McIntosh AR
    Neurobiol Aging; 2001; 22(2):237-46. PubMed ID: 11182473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review.
    Timmann D; Drepper J; Frings M; Maschke M; Richter S; Gerwig M; Kolb FP
    Cortex; 2010; 46(7):845-57. PubMed ID: 19665115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity.
    Antonietti A; Casellato C; D'Angelo E; Pedrocchi A
    IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2748-2762. PubMed ID: 27608482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.