These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 8059010)
1. Restraint changes pentobarbital-induced sleeping time in rats: evidence that arousal is modulated by brain corticotropin-releasing hormone and opioid in stress. Shibasaki T; Imaki T; Hotta M; Ling N; Demura H Regul Pept; 1994 May; 51(2):141-9. PubMed ID: 8059010 [TBL] [Abstract][Full Text] [Related]
2. Brain corticotropin-releasing hormone increases arousal in stress. Shibasaki T; Yamauchi N; Hotta M; Imaki T; Oda T; Ling N; Demura H Brain Res; 1991 Jul; 554(1-2):352-4. PubMed ID: 1933317 [TBL] [Abstract][Full Text] [Related]
3. Beta 1-adrenergic mechanism is involved in stress-induced increase in arousal. Shibasaki T; Yamada K; Yamauchi N; Imaki T; Hotta M; Demura H Neurosci Lett; 1994 Oct; 180(2):167-70. PubMed ID: 7700573 [TBL] [Abstract][Full Text] [Related]
4. Non-peptidic corticotropin-releasing hormone receptor type 1 antagonist reverses restraint stress-induced shortening of sodium pentobarbital-induced sleeping time of rats: evidence that an increase in arousal induced by stress is mediated through CRH receptor type 1. Arai K; Ohata H; Shibasaki T Neurosci Lett; 1998 Oct; 255(2):103-6. PubMed ID: 9835225 [TBL] [Abstract][Full Text] [Related]
5. Roles of central and peripheral mu, delta and kappa opioid receptors in the mediation of gastric acid secretory effects in the rat. Fox DA; Burks TF J Pharmacol Exp Ther; 1988 Feb; 244(2):456-62. PubMed ID: 2831341 [TBL] [Abstract][Full Text] [Related]
6. Psychological stress increases arousal through brain corticotropin-releasing hormone without significant increase in adrenocorticotropin and catecholamine secretion. Shibasaki T; Imaki T; Hotta M; Ling N; Demura H Brain Res; 1993 Jul; 618(1):71-5. PubMed ID: 8402179 [TBL] [Abstract][Full Text] [Related]
7. Streptozotocin-induced diabetes selectively alters the potency of analgesia produced by mu-opioid agonists, but not by delta- and kappa-opioid agonists. Kamei J; Ohhashi Y; Aoki T; Kawasima N; Kasuya Y Brain Res; 1992 Feb; 571(2):199-203. PubMed ID: 1319265 [TBL] [Abstract][Full Text] [Related]
8. Differential effects of mu-, delta- and kappa-opioid receptor agonists on the discriminative stimulus properties of cocaine in rats. Suzuki T; Mori T; Tsuji M; Maeda J; Kishimoto Y; Misawa M; Nagase H Eur J Pharmacol; 1997 Apr; 324(1):21-9. PubMed ID: 9137909 [TBL] [Abstract][Full Text] [Related]
9. Body temperature response profiles for selective mu, delta and kappa opioid agonists in restrained and unrestrained rats. Spencer RL; Hruby VJ; Burks TF J Pharmacol Exp Ther; 1988 Jul; 246(1):92-101. PubMed ID: 2839673 [TBL] [Abstract][Full Text] [Related]
10. Differential modulation by muscimol and baclofen on antinociception induced by morphine, beta-endorphin, D-Pen2,5-enkephalin and U50,488H administered intracerebroventricularly in the mouse. Suh HW; Song DK; Kim YH; Choi YS; Yoo JS; Tseng LF Naunyn Schmiedebergs Arch Pharmacol; 1995 Dec; 352(6):614-9. PubMed ID: 9053732 [TBL] [Abstract][Full Text] [Related]
11. Role of central mu, delta-1, and kappa-1 opioid receptors in opioid-induced muscle rigidity in the rat. Vankova ME; Weinger MB; Chen DY; Bronson JB; Motis V; Koob GF Anesthesiology; 1996 Sep; 85(3):574-83. PubMed ID: 8853088 [TBL] [Abstract][Full Text] [Related]
12. mu-Opioid peptide modulation of cardiovascular and sympathoadrenal responses to stress. Marson L; Kiritsy-Roy JA; Van Loon GR Am J Physiol; 1989 Oct; 257(4 Pt 2):R901-8. PubMed ID: 2552846 [TBL] [Abstract][Full Text] [Related]
13. Role of nitric oxide/cyclic GMP in i.c.v. administered beta-endorphin- and (+)-cis-dioxolane-induced antinociception in the mouse. Xu JY; Tseng LF Eur J Pharmacol; 1994 Sep; 262(3):223-31. PubMed ID: 7813587 [TBL] [Abstract][Full Text] [Related]
14. Mu antagonist properties of kappa agonists in a model of rat urinary bladder motility in vivo. Sheldon RJ; Nunan L; Porreca F J Pharmacol Exp Ther; 1987 Oct; 243(1):234-40. PubMed ID: 2822899 [TBL] [Abstract][Full Text] [Related]
15. Supraspinal administration of opioids with selectivity for mu-, delta- and kappa-opioid receptors produces analgesia in amphibians. Stevens CW; Rothe KS Eur J Pharmacol; 1997 Jul; 331(1):15-21. PubMed ID: 9274924 [TBL] [Abstract][Full Text] [Related]
16. Evidence for an involvement of the mu-type of opioid receptor in the modulation of learning. Aloyo VJ; Romano AG; Harvey JA Neuroscience; 1993 Jul; 55(2):511-9. PubMed ID: 8397346 [TBL] [Abstract][Full Text] [Related]
17. Multiplicative interaction between intrathecally and intracerebroventricularly administered mu opioid agonists but limited interactions between delta and kappa agonists for antinociception in mice. Roerig SC; Fujimoto JM J Pharmacol Exp Ther; 1989 Jun; 249(3):762-8. PubMed ID: 2567350 [TBL] [Abstract][Full Text] [Related]
18. Neuropeptide Y reverses corticotropin-releasing hormone- and psychological stress-caused shortening of sodium pentobarbital-induced sleep in rats. Yamada K; Shibasaki T; Tsumori C; Imaki T; Hotta M; Wakabayashi I; Demura H Brain Res; 1996 Jul; 725(2):272-5. PubMed ID: 8836536 [TBL] [Abstract][Full Text] [Related]
19. Effects of intracerebroventricularly administered mu-, delta- and kappa-opioid agonists on locomotor activity of the guinea pig and the pharmacology of the locomotor response to U50,488H. Bot G; Chahl LA; Brent PJ; Johnston PA Neuropharmacology; 1992 Sep; 31(9):825-33. PubMed ID: 1359440 [TBL] [Abstract][Full Text] [Related]
20. Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse. Porreca F; Mosberg HI; Hurst R; Hruby VJ; Burks TF J Pharmacol Exp Ther; 1984 Aug; 230(2):341-8. PubMed ID: 6086883 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]