These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 8059020)

  • 21. Ferroptosis involves in renal tubular cell death in diabetic nephropathy.
    Wang Y; Bi R; Quan F; Cao Q; Lin Y; Yue C; Cui X; Yang H; Gao X; Zhang D
    Eur J Pharmacol; 2020 Dec; 888():173574. PubMed ID: 32976829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tubular cell protein degradation in early diabetic renal hypertrophy.
    Shechter P; Boner G; Rabkin R
    J Am Soc Nephrol; 1994 Feb; 4(8):1582-7. PubMed ID: 8025232
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of O-linked N-acetylglucosamine modification in diabetic nephropathy.
    Gellai R; Hodrea J; Lenart L; Hosszu A; Koszegi S; Balogh D; Ver A; Banki NF; Fulop N; Molnar A; Wagner L; Vannay A; Szabo AJ; Fekete A
    Am J Physiol Renal Physiol; 2016 Dec; 311(6):F1172-F1181. PubMed ID: 27029430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduced albumin reabsorption in the proximal tubule of early-stage diabetic rats.
    Tojo A; Onozato ML; Ha H; Kurihara H; Sakai T; Goto A; Fujita T; Endou H
    Histochem Cell Biol; 2001 Sep; 116(3):269-76. PubMed ID: 11685557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy.
    Wang SN; LaPage J; Hirschberg R
    Kidney Int; 2000 Mar; 57(3):1002-14. PubMed ID: 10720953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reactive oxygen species promote caspase-12 expression and tubular apoptosis in diabetic nephropathy.
    Brezniceanu ML; Lau CJ; Godin N; Chénier I; Duclos A; Ethier J; Filep JG; Ingelfinger JR; Zhang SL; Chan JS
    J Am Soc Nephrol; 2010 Jun; 21(6):943-54. PubMed ID: 20299359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chelation of dietary iron prevents iron accumulation and macrophage infiltration in the type I diabetic kidney.
    Morita T; Nakano D; Kitada K; Morimoto S; Ichihara A; Hitomi H; Kobori H; Shiojima I; Nishiyama A
    Eur J Pharmacol; 2015 Jun; 756():85-91. PubMed ID: 25820160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondria transfer from mesenchymal stem cells structurally and functionally repairs renal proximal tubular epithelial cells in diabetic nephropathy in vivo.
    Konari N; Nagaishi K; Kikuchi S; Fujimiya M
    Sci Rep; 2019 Mar; 9(1):5184. PubMed ID: 30914727
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Upregulation of osteopontin gene expression in diabetic rat proximal tubular cells revealed by microarray profiling.
    Hsieh TJ; Chen R; Zhang SL; Liu F; Brezniceanu ML; Whiteside CI; Fantus IG; Ingelfinger JR; Hamet P; Chan JS
    Kidney Int; 2006 Mar; 69(6):1005-15. PubMed ID: 16528250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of IGFBP7 in Diabetic Nephropathy: TGF-β1 Induces IGFBP7 via Smad2/4 in Human Renal Proximal Tubular Epithelial Cells.
    Watanabe J; Takiyama Y; Honjyo J; Makino Y; Fujita Y; Tateno M; Haneda M
    PLoS One; 2016; 11(3):e0150897. PubMed ID: 26974954
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ATP synthase subunit-β down-regulation aggravates diabetic nephropathy.
    Guan SS; Sheu ML; Wu CT; Chiang CK; Liu SH
    Sci Rep; 2015 Oct; 5():14561. PubMed ID: 26449648
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High expression of neutrophil gelatinase-associated lipocalin (NGAL) in the kidney proximal tubules of diabetic rats.
    Liu F; Yang H; Chen H; Zhang M; Ma Q
    Adv Med Sci; 2015 Mar; 60(1):133-8. PubMed ID: 25661178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glucagon-like peptide-1 receptor agonist inhibits asymmetric dimethylarginine generation in the kidney of streptozotocin-induced diabetic rats by blocking advanced glycation end product-induced protein arginine methyltranferase-1 expression.
    Ojima A; Ishibashi Y; Matsui T; Maeda S; Nishino Y; Takeuchi M; Fukami K; Yamagishi S
    Am J Pathol; 2013 Jan; 182(1):132-41. PubMed ID: 23159951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A very-low-protein diet ameliorates advanced diabetic nephropathy through autophagy induction by suppression of the mTORC1 pathway in Wistar fatty rats, an animal model of type 2 diabetes and obesity.
    Kitada M; Ogura Y; Suzuki T; Sen S; Lee SM; Kanasaki K; Kume S; Koya D
    Diabetologia; 2016 Jun; 59(6):1307-17. PubMed ID: 27020449
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hyperuricemia-induced NLRP3 activation of macrophages contributes to the progression of diabetic nephropathy.
    Kim SM; Lee SH; Kim YG; Kim SY; Seo JW; Choi YW; Kim DJ; Jeong KH; Lee TW; Ihm CG; Won KY; Moon JY
    Am J Physiol Renal Physiol; 2015 May; 308(9):F993-F1003. PubMed ID: 25651569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quercetin inhibits the mTORC1/p70S6K signaling-mediated renal tubular epithelial-mesenchymal transition and renal fibrosis in diabetic nephropathy.
    Lu Q; Ji XJ; Zhou YX; Yao XQ; Liu YQ; Zhang F; Yin XX
    Pharmacol Res; 2015 Sep; 99():237-47. PubMed ID: 26151815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Urinary Renin in Patients and Mice With Diabetic Kidney Disease.
    Tang J; Wysocki J; Ye M; Vallés PG; Rein J; Shirazi M; Bader M; Gomez RA; Sequeira-Lopez MS; Afkarian M; Batlle D
    Hypertension; 2019 Jul; 74(1):83-94. PubMed ID: 31079532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impaired Podocyte Autophagy Exacerbates Proteinuria in Diabetic Nephropathy.
    Tagawa A; Yasuda M; Kume S; Yamahara K; Nakazawa J; Chin-Kanasaki M; Araki H; Araki S; Koya D; Asanuma K; Kim EH; Haneda M; Kajiwara N; Hayashi K; Ohashi H; Ugi S; Maegawa H; Uzu T
    Diabetes; 2016 Mar; 65(3):755-67. PubMed ID: 26384385
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tubular overexpression of Gremlin in transgenic mice aggravates renal damage in diabetic nephropathy.
    Marchant V; Droguett A; Valderrama G; Burgos ME; Carpio D; Kerr B; Ruiz-Ortega M; Egido J; Mezzano S
    Am J Physiol Renal Physiol; 2015 Sep; 309(6):F559-68. PubMed ID: 26155842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Effect of Cordyceps sinensis on expressions of HIF-1α and VEGF in the kidney of rats with diabetic nephropathy].
    Yuan M; Tang R; Zhou Q; Liu K; Xiao Z; Pouranan V
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2013 May; 38(5):448-57. PubMed ID: 23719521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.