These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 8059939)

  • 1. A differential cloning procedure of complex genomic DNA fragments.
    Yokota H; Amano S; Yamane T; Ataka K; Kikuya E; Oishi M
    Anal Biochem; 1994 May; 219(1):131-8. PubMed ID: 8059939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential cloning using in-gel competitive reassociation.
    Yokota H; Amano S; Yamane T; Ataka K; Kikuya E; Oishi M
    Electrophoresis; 1995 Feb; 16(2):286-90. PubMed ID: 7774570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of highly extensive polymorphic DNA libraries by in-gel competitive reassociation procedure.
    Inoue S; Kiyama R; Oishi M
    Genomics; 1996 Feb; 31(3):271-6. PubMed ID: 8838307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A differential cloning procedure for rearranged or altered genomic DNA based on in-gel competitive reassociation.
    Kiyama R; Inoue S; Ohki R; Kikuya E; Yokota H; Oishi M
    Adv Biophys; 1995; 31():151-61. PubMed ID: 7625271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning of no tI-cleaved genomic DNA fragments appearing as spots in 2D gel electrophoresis.
    Nagai H; Pongliktmongkol M; Kim YS; Yoshikawa H; Matsubara K
    Biochem Biophys Res Commun; 1995 Aug; 213(1):258-65. PubMed ID: 7639743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential cloning of genomic DNA: cloning of DNA with an altered primary structure by in-gel competitive reassociation.
    Yokota H; Oishi M
    Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6398-402. PubMed ID: 2385598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient method for obtaining a subtracted genomic DNA library by the modified in-gel competitive reassociation method.
    Sasaki H; Nomura S; Akiyama N; Takahashi A; Sugimura T; Oishi M; Terada M
    Cancer Res; 1994 Nov; 54(22):5821-3. PubMed ID: 7954408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unit cloning and amplification as novel and universal strategies for complex vector construction and small DNA fragment preparation.
    Ye C; Gu J; Chen S; Deng A; Li YZ; Li D
    Electrophoresis; 2010 Sep; 31(17):2929-35. PubMed ID: 20690148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct cloning of the unknown flanking DNA fragments from a large insert without restriction mapping.
    Song BL; Qi W; Li BL
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 May; 34(3):365-8. PubMed ID: 12019453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning and characterization of contiguously located repetitive and single copy DNA sequences of Mycobacterium tuberculosis: development of PCR-based diagnostic assay.
    Reddi PP; Talwar GP; Khandekar PS
    Int J Lepr Other Mycobact Dis; 1993 Jun; 61(2):227-35. PubMed ID: 8371032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple and efficient cloning of small polymerase chain reaction-generated DNA products.
    Roeder T
    Anal Biochem; 2000 Oct; 285(2):278-80. PubMed ID: 11017717
    [No Abstract]   [Full Text] [Related]  

  • 12. A vector for purification-free cloning of polymerase chain reaction products.
    Park HK; Zeng C
    Anal Biochem; 2008 Jun; 377(1):108-10. PubMed ID: 18371291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bypassing successive cloning of two fragments by one step cloning using polymerase chain reaction.
    Ghosh SK; Mandal RK
    Indian J Exp Biol; 1994 Sep; 32(9):676-8. PubMed ID: 7814051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupled one-step reverse transcription and polymerase chain reaction procedure for cloning large cDNA fragments.
    Aatsinki JT
    Methods Mol Biol; 2002; 192():53-8. PubMed ID: 12494636
    [No Abstract]   [Full Text] [Related]  

  • 15. Rapid identification and mapping of insertion sequences in Escherichia coli genomes using vectorette PCR.
    Zhong S; Dean AM
    BMC Microbiol; 2004 Jul; 4():26. PubMed ID: 15242519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restriction selection cloning: a simple general method for the selection of recombinant DNA.
    Russek SJ; Quirk JC; Farb DH
    Cell Mol Biol Res; 1993; 39(2):177-82. PubMed ID: 8220586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A universal method for directional cloning of PCR products based on asymmetric PCR.
    Wang BL; Jiao YL; Li XX; Zheng F; Liang H; Sun ZY; Guo G
    Biotechnol Appl Biochem; 2009 Jan; 52(Pt 1):41-4. PubMed ID: 18352859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-base excess adaptor ligation method for walking uncloned genomic DNA.
    Tonooka Y; Mizukami Y; Fujishima M
    Appl Microbiol Biotechnol; 2008 Feb; 78(1):173-80. PubMed ID: 18071644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction and characterization of a bovine bacterial artificial chromosome library.
    Cai L; Taylor JF; Wing RA; Gallagher DS; Woo SS; Davis SK
    Genomics; 1995 Sep; 29(2):413-25. PubMed ID: 8666390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of infectious laryngotracheitis virus strains by polymerase chain reaction.
    Clavijo A; Nagy E
    Avian Dis; 1997; 41(1):241-6. PubMed ID: 9087342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.