These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 8060028)

  • 1. Arterial windkessel parameter estimation: a new time-domain method.
    Shim Y; Pasipoularides A; Straley CA; Hampton TG; Soto PF; Owen CH; Davis JW; Glower DD
    Ann Biomed Eng; 1994; 22(1):66-77. PubMed ID: 8060028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New closed-form expressions for the estimation of arterial windkessel compliance.
    Gnudi G
    Comput Biol Med; 1998 May; 28(3):207-23. PubMed ID: 9784960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total arterial inertance as the fourth element of the windkessel model.
    Stergiopulos N; Westerhof BE; Westerhof N
    Am J Physiol; 1999 Jan; 276(1):H81-8. PubMed ID: 9887020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of linear and nonlinear formulations of the three-element windkessel model.
    Fogliardi R; Di Donfrancesco M; Burattini R
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2661-8. PubMed ID: 8997329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systemic venous circulation. Waves propagating on a windkessel: relation of arterial and venous windkessels to systemic vascular resistance.
    Wang JJ; Flewitt JA; Shrive NG; Parker KH; Tyberg JV
    Am J Physiol Heart Circ Physiol; 2006 Jan; 290(1):H154-62. PubMed ID: 16113064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of isoflurane and halothane on aortic input impedance quantified using a three-element Windkessel model.
    Hettrick DA; Pagel PS; Warltier DC
    Anesthesiology; 1995 Aug; 83(2):361-73. PubMed ID: 7631959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Total systemic arterial compliance and aortic characteristic impedance in the dog as a function of pressure: a model based study.
    Burattini R; Gnudi G; Westerhof N; Fioretti S
    Comput Biomed Res; 1987 Apr; 20(2):154-65. PubMed ID: 3595097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex and frequency-dependent compliance of viscoelastic windkessel resolves contradictions in elastic windkessels.
    Burattini R; Natalucci S
    Med Eng Phys; 1998 Oct; 20(7):502-14. PubMed ID: 9832026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the three-element windkessel model incorporating a pressure-dependent compliance.
    Cappello A; Gnudi G; Lamberti C
    Ann Biomed Eng; 1995; 23(2):164-77. PubMed ID: 7605053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical relationship between arterial input impedance and the three-element Windkessel series resistance.
    Gnudi G
    Med Biol Eng Comput; 1998 Jul; 36(4):480-4. PubMed ID: 10198533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple and accurate way for estimating total and segmental arterial compliance: the pulse pressure method.
    Stergiopulos N; Meister JJ; Westerhof N
    Ann Biomed Eng; 1994; 22(4):392-7. PubMed ID: 7998684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increase in pulse wavelength causes the systemic arterial tree to degenerate into a classical windkessel.
    Mohiuddin MW; Laine GA; Quick CM
    Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1164-71. PubMed ID: 17483241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propofol alters left ventricular afterload as evaluated by aortic input impedance in dogs.
    Lowe D; Hettrick DA; Pagel PS; Warltier DC
    Anesthesiology; 1996 Feb; 84(2):368-76. PubMed ID: 8602668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of Windkessel as a model of aortic input impedance.
    Burkhoff D; Alexander J; Schipke J
    Am J Physiol; 1988 Oct; 255(4 Pt 2):H742-53. PubMed ID: 3177666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implication of the systolic hump in systemic arterial pressure waves.
    Okai O; Watanabe A
    Med Biol Eng Comput; 1998 Sep; 36(5):587-91. PubMed ID: 10367442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple algorithm for defining the mean cardiac cycle of aortic flow and pressure during steady state.
    Burattini R; Fioretti S; Jetto L
    Comput Biomed Res; 1985 Aug; 18(4):303-12. PubMed ID: 3840069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of arterial compliance in aortic regurgitation: three methods evaluated in pigs.
    Slørdahl SA; Piene H; Solbakken JE; Rossvoll O; Samstad SO; Angelsen BA
    Med Biol Eng Comput; 1990 Jul; 28(4):293-9. PubMed ID: 2246926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological interpretation of inductance and low-resistance terms in four-element windkessel models: assessment by generalized sensitivity function analysis.
    Burattini R; Bini S
    Med Eng Phys; 2011 Jul; 33(6):739-54. PubMed ID: 21377401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of total arterial compliance and peripheral resistance in the determination of systolic and diastolic aortic pressure.
    Stergiopulos N; Westerhof N
    Pathol Biol (Paris); 1999 Jun; 47(6):641-7. PubMed ID: 10472075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical solution to Windkessel models using piecewise linear aortic flow waveform.
    Gnudi G
    Physiol Meas; 2023 Jun; 44(6):. PubMed ID: 37280722
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.