These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 8060030)

  • 1. Theory of the oscillometric maximum and the systolic and diastolic detection ratios.
    Drzewiecki G; Hood R; Apple H
    Ann Biomed Eng; 1994; 22(1):88-96. PubMed ID: 8060030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical study of some biomechanical factors affecting the oscillometric blood pressure measurement.
    Ursino M; Cristalli C
    IEEE Trans Biomed Eng; 1996 Aug; 43(8):761-78. PubMed ID: 9216149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oscillometric determination of diastolic, mean and systolic blood pressure--a numerical model.
    Forster FK; Turney D
    J Biomech Eng; 1986 Nov; 108(4):359-64. PubMed ID: 3795883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Errors of oscillometric blood pressure measurement as predicted by simulation.
    Raamat R; Talts J; Jagomägi K; Kivastik J
    Blood Press Monit; 2011 Oct; 16(5):238-45. PubMed ID: 21914985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new oscillometry-based method for estimating the brachial arterial compliance under loaded conditions.
    Liu SH; Wang JJ; Huang KS
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2463-70. PubMed ID: 18838372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive determination of instantaneous brachial blood flow using the oscillometric method.
    Liu SH; Wang JJ; Cheng DC
    Biomed Tech (Berl); 2009 Aug; 54(4):171-7. PubMed ID: 19807282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the shapes of the oscillometric pulse amplitude envelopes and their characteristic ratios on the differences between auscultatory and oscillometric blood pressure measurements.
    Amoore JN; Vacher E; Murray IC; Mieke S; King ST; Smith FE; Murray A
    Blood Press Monit; 2007 Oct; 12(5):297-305. PubMed ID: 17890968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the N-point moving average method for brachial pressure waveform-derived estimation of central aortic systolic pressure.
    Shih YT; Cheng HM; Sung SH; Hu WC; Chen CH
    Hypertension; 2014 Apr; 63(4):865-70. PubMed ID: 24420554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating central systolic blood pressure during oscillometric determination of blood pressure: proof of concept and validation by comparison with intra-aortic pressure recording and arterial tonometry.
    Brett SE; Guilcher A; Clapp B; Chowienczyk P
    Blood Press Monit; 2012 Jun; 17(3):132-6. PubMed ID: 22466804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of different presentations of oscillometric data on automatic determination of systolic and diastolic pressures.
    Jazbinsek V; Luznik J; Mieke S; Trontelj Z
    Ann Biomed Eng; 2010 Mar; 38(3):774-87. PubMed ID: 19953320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The meaning of the point of maximum oscillations in cuff pressure in the indirect measurement of blood pressure--part ii.
    Mauck GW; Smith CR; Geddes LA; Bourland JD
    J Biomech Eng; 1980 Feb; 102(1):28-33. PubMed ID: 7382450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central Blood Pressure Monitoring via a Standard Automatic Arm Cuff.
    Natarajan K; Cheng HM; Liu J; Gao M; Sung SH; Chen CH; Hahn JO; Mukkamala R
    Sci Rep; 2017 Oct; 7(1):14441. PubMed ID: 29089581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of mechanical behaviour of the brachial artery on blood pressure measurement during both cuff inflation and cuff deflation.
    Zheng D; Pan F; Murray A
    Blood Press Monit; 2013 Oct; 18(5):265-71. PubMed ID: 23924706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-invasive estimates of aortic root pressures: external subclavian arterial pulse tracing calibrated by oscillometrically determined brachial arterial pressures.
    Aakhus S; Torp H; Haugland T; Hatle L
    Clin Physiol; 1993 Nov; 13(6):573-86. PubMed ID: 8119052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radial artery tonometry: moderately accurate but unpredictable technique of continuous non-invasive arterial pressure measurement.
    Weiss BM; Spahn DR; Rahmig H; Rohling R; Pasch T
    Br J Anaesth; 1996 Mar; 76(3):405-11. PubMed ID: 8785142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How important is the recommended slow cuff pressure deflation rate for blood pressure measurement?
    Zheng D; Amoore JN; Mieke S; Murray A
    Ann Biomed Eng; 2011 Oct; 39(10):2584-91. PubMed ID: 21735319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optical oscillometric method for neonatal and premature infant blood pressure monitoring.
    Roeder RA; Geddes LA
    Adv Neonatal Care; 2009 Apr; 9(2):77-81. PubMed ID: 19363328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An initial step towards improving the accuracy of the oscillometric blood pressure measurement.
    Liu J; Hahn JO; Mukkamala R
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4082-5. PubMed ID: 24110629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood flow in a brachial artery compressed externally by a pneumatic cuff.
    Shimizu M
    J Biomech Eng; 1992 Feb; 114(1):78-83. PubMed ID: 1491590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biases in the measurement of arterial pressure.
    Finnie KJ; Watts DG; Armstrong PW
    Crit Care Med; 1984 Nov; 12(11):965-8. PubMed ID: 6499482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.