These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 8060179)
21. Hong M; Mou H; Liu X; Huang M; Chu J Bioprocess Biosyst Eng; 2017 Sep; 40(9):1337-1348. PubMed ID: 28567527 [TBL] [Abstract][Full Text] [Related]
22. A key developmental regulator controls the synthesis of the antibiotic erythromycin in Saccharopolyspora erythraea. Chng C; Lum AM; Vroom JA; Kao CM Proc Natl Acad Sci U S A; 2008 Aug; 105(32):11346-51. PubMed ID: 18685110 [TBL] [Abstract][Full Text] [Related]
23. Toward improvement of erythromycin A production in an industrial Saccharopolyspora erythraea strain via facilitation of genetic manipulation with an artificial attB site for specific recombination. Wu J; Zhang Q; Deng W; Qian J; Zhang S; Liu W Appl Environ Microbiol; 2011 Nov; 77(21):7508-16. PubMed ID: 21841022 [TBL] [Abstract][Full Text] [Related]
24. Cofactor Engineering Redirects Secondary Metabolism and Enhances Erythromycin Production in Li X; Chen J; Andersen JM; Chu J; Jensen PR ACS Synth Biol; 2020 Mar; 9(3):655-670. PubMed ID: 32078772 [No Abstract] [Full Text] [Related]
25. PccD Regulates Branched-Chain Amino Acid Degradation and Exerts a Negative Effect on Erythromycin Production in Saccharopolyspora erythraea. Xu Z; Liu Y; Ye BC Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29439982 [TBL] [Abstract][Full Text] [Related]
26. [Isolation and characterization of Saccharopolyspora erythraea mutants, resistant to chloramphenicol]. Nastasiak IN; Zavorotnaia SA; Fedorenko VA; Danilenko VN Antibiot Khimioter; 1999; 44(3):5-10. PubMed ID: 10382030 [TBL] [Abstract][Full Text] [Related]
27. A genetically engineered strain of Saccharopolyspora erythraea that produces 6,12-dideoxyerythromycin A as the major fermentation product. Stassi D; Post D; Satter M; Jackson M; Maine G Appl Microbiol Biotechnol; 1998 Jun; 49(6):725-31. PubMed ID: 9684306 [TBL] [Abstract][Full Text] [Related]
28. Engineering of the methylmalonyl-CoA metabolite node of Saccharopolyspora erythraea for increased erythromycin production. Reeves AR; Brikun IA; Cernota WH; Leach BI; Gonzalez MC; Weber JM Metab Eng; 2007 May; 9(3):293-303. PubMed ID: 17482861 [TBL] [Abstract][Full Text] [Related]
29. Blocking the flow of propionate into TCA cycle through a mutB knockout leads to a significant increase of erythromycin production by an industrial strain of Saccharopolyspora erythraea. Chen C; Hong M; Chu J; Huang M; Ouyang L; Tian X; Zhuang Y Bioprocess Biosyst Eng; 2017 Feb; 40(2):201-209. PubMed ID: 27709326 [TBL] [Abstract][Full Text] [Related]
30. Improved bioconversion of 15-fluoro-6-deoxyerythronolide B to 15-fluoro-erythromycin A by overexpression of the eryK Gene in Saccharopolyspora erythraea. Desai RP; Rodriguez E; Galazzo JL; Licari P Biotechnol Prog; 2004; 20(6):1660-5. PubMed ID: 15575696 [TBL] [Abstract][Full Text] [Related]
31. High GC Content Cas9-Mediated Genome-Editing and Biosynthetic Gene Cluster Activation in Saccharopolyspora erythraea. Liu Y; Wei WP; Ye BC ACS Synth Biol; 2018 May; 7(5):1338-1348. PubMed ID: 29634237 [TBL] [Abstract][Full Text] [Related]
32. Structural elucidation of a novel erythromycin, 13-cyclopentyl-13-desethyl-erythromycin B, from a recombinant Saccharopolyspora erythraea strain, NRRL 2338 pIG/1. Parsons IC; Everett JR; Pacey MS; Ruddock JC; Swanson AG; Thompson CM J Antibiot (Tokyo); 1999 Feb; 52(2):190-2. PubMed ID: 10344576 [No Abstract] [Full Text] [Related]
33. Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Oliynyk M; Samborskyy M; Lester JB; Mironenko T; Scott N; Dickens S; Haydock SF; Leadlay PF Nat Biotechnol; 2007 Apr; 25(4):447-53. PubMed ID: 17369815 [TBL] [Abstract][Full Text] [Related]
34. [Study on relationship between length of homologous sequences and chromosomic recombination rate in Saccharopolyspora erythraea]. Zhang BC; Zhao ZH; Wang YG; Yu XQ; Liu CX; Ma QJ Sheng Wu Gong Cheng Xue Bao; 2003 Jan; 19(1):13-8. PubMed ID: 15969029 [TBL] [Abstract][Full Text] [Related]
35. Integrated omics approaches provide strategies for rapid erythromycin yield increase in Saccharopolyspora erythraea. Karničar K; Drobnak I; Petek M; Magdevska V; Horvat J; Vidmar R; Baebler Š; Rotter A; Jamnik P; Fujs Š; Turk B; Fonovič M; Gruden K; Kosec G; Petković H Microb Cell Fact; 2016 Jun; 15():93. PubMed ID: 27255285 [TBL] [Abstract][Full Text] [Related]
36. SACE_3986, a TetR family transcriptional regulator, negatively controls erythromycin biosynthesis in Saccharopolyspora erythraea. Wu P; Pan H; Zhang C; Wu H; Yuan L; Huang X; Zhou Y; Ye BC; Weaver DT; Zhang L; Zhang B J Ind Microbiol Biotechnol; 2014 Jul; 41(7):1159-67. PubMed ID: 24793123 [TBL] [Abstract][Full Text] [Related]
37. Reconstruction of the Saccharopolyspora erythraea genome-scale model and its use for enhancing erythromycin production. Licona-Cassani C; Marcellin E; Quek LE; Jacob S; Nielsen LK Antonie Van Leeuwenhoek; 2012 Oct; 102(3):493-502. PubMed ID: 22847261 [TBL] [Abstract][Full Text] [Related]
38. A new modular polyketide synthase in the erythromycin producer Saccharopolyspora erythraea. Boakes S; Oliynyk M; Cortés J; Böhm I; Rudd BA; Revill WP; Staunton J; Leadlay PF J Mol Microbiol Biotechnol; 2004; 8(2):73-80. PubMed ID: 15925898 [TBL] [Abstract][Full Text] [Related]
40. Systems perspectives on erythromycin biosynthesis by comparative genomic and transcriptomic analyses of S. erythraea E3 and NRRL23338 strains. Li YY; Chang X; Yu WB; Li H; Ye ZQ; Yu H; Liu BH; Zhang Y; Zhang SL; Ye BC; Li YX BMC Genomics; 2013 Jul; 14():523. PubMed ID: 23902230 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]