These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 8060307)

  • 1. NADPH oxidase is not essential for low density lipoprotein oxidation by human monocyte-derived macrophages.
    Wilkins GM; Segal AW; Leake DS
    Biochem Biophys Res Commun; 1994 Aug; 202(3):1300-7. PubMed ID: 8060307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of NADPH oxidase required for macrophage-mediated oxidation of low-density lipoprotein.
    Aviram M; Rosenblat M; Etzioni A; Levy R
    Metabolism; 1996 Sep; 45(9):1069-79. PubMed ID: 8781293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysophosphatidylcholine (LPC) attenuates macrophage-mediated oxidation of LDL.
    Rosenblat M; Oren R; Aviram M
    Biochem Biophys Res Commun; 2006 Jun; 344(4):1271-7. PubMed ID: 16650824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenously produced lipoprotein lipase enhances the binding and cell association of native, mildly oxidized and moderately oxidized low-density lipoprotein in mouse peritoneal macrophages.
    Wang X; Greilberger J; Levak-Frank S; Zimmermann R; Zechner R; Jürgens G
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):347-53. PubMed ID: 10510299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-induced copper ion-mediated low density lipoprotein oxidation increases during in vivo monocyte-to-macrophage differentiation.
    Fuhrman B; Shiner M; Volkova N; Aviram M
    Free Radic Biol Med; 2004 Jul; 37(2):259-71. PubMed ID: 15203197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of inhibitors of free radical generating-enzymes on low-density lipoprotein oxidation by macrophages.
    Wilkins GM; Leake DS
    Biochim Biophys Acta; 1994 Feb; 1211(1):69-78. PubMed ID: 7510129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of dietary supplementation of beta-carotene on human monocyte-macrophage-mediated oxidation of low density lipoprotein.
    Levy Y; Kaplan M; Ben-Amotz A; Aviram M
    Isr J Med Sci; 1996 Jun; 32(6):473-8. PubMed ID: 8682654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of cholesterol-rich remnant lipoproteins by human monocyte-derived macrophages is mediated by low density lipoprotein receptors.
    Koo C; Wernette-Hammond ME; Garcia Z; Malloy MJ; Uauy R; East C; Bilheimer DW; Mahley RW; Innerarity TL
    J Clin Invest; 1988 May; 81(5):1332-40. PubMed ID: 3163347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increase in cystine transport activity and glutathione level in mouse peritoneal macrophages exposed to oxidized low-density lipoprotein.
    Sato H; Takenaka Y; Fujiwara K; Yamaguchi M; Abe K; Bannai S
    Biochem Biophys Res Commun; 1995 Oct; 215(1):154-9. PubMed ID: 7575584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraperitoneal injection of platelet secretory products into mice increases macrophage uptake of oxidized low density lipoprotein.
    Hussein O; Brook GJ; Aviram M
    Isr J Med Sci; 1993 Aug; 29(8):453-9. PubMed ID: 8407271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trans-plasma membrane electron transport induces macrophage-mediated low density lipoprotein oxidation.
    Baoutina A; Dean RT; Jessup W
    FASEB J; 2001 Jul; 15(9):1580-2. PubMed ID: 11427492
    [No Abstract]   [Full Text] [Related]  

  • 12. Macrophages require both iron and copper to oxidize low-density lipoprotein in Hanks' balanced salt solution.
    Kritharides L; Jessup W; Dean RT
    Arch Biochem Biophys; 1995 Oct; 323(1):127-36. PubMed ID: 7487058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficient flavoprotein component of the NADPH-dependent O2-.-generating oxidase in the neutrophils from three male patients with chronic granulomatous disease.
    Gabig TG; Lefker BA
    J Clin Invest; 1984 Mar; 73(3):701-5. PubMed ID: 6707199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Modulation by some fatty acids of protein kinase C-dependent NADPH oxidase in human adherent monocyte: mechanism of action, possible implication in atherogenesis].
    Léger CL; Kadri-Hassani N
    C R Seances Soc Biol Fil; 1995; 189(5):765-79. PubMed ID: 8673625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low density lipoprotein undergoes oxidation within lysosomes in cells.
    Wen Y; Leake DS
    Circ Res; 2007 May; 100(9):1337-43. PubMed ID: 17446432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative and malondialdehyde modification of low-density lipoprotein: a comparative study of binding and degradation by macrophages and endothelial cells.
    Zhou M; Chen Y; Liu S; Ding Z; Pang Z; Wan J
    Br J Biomed Sci; 1998 Sep; 55(3):192-8. PubMed ID: 10367404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LDL are oxidatively modified by platelets via GP91(phox) and accumulate in human monocytes.
    Carnevale R; Pignatelli P; Lenti L; Buchetti B; Sanguigni V; Di Santo S; Violi F
    FASEB J; 2007 Mar; 21(3):927-34. PubMed ID: 17194695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phospholipase A2 and phospholipase D are involved in macrophage NADPH oxidase-mediated oxidation of low density lipoprotein.
    Aviram M; Rosenblat M
    Isr J Med Sci; 1996 Sep; 32(9):749-56. PubMed ID: 8865831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-density lipoprotein modification by normal, myeloperoxidase-deficient and NADPH oxidase-deficient granulocytes and the impact of redox active transition metal ions.
    Gerber CE; Bruchelt G; Ledinski G; Greilberger J; Niethammer D; Jürgens G
    Redox Rep; 2002; 7(2):111-9. PubMed ID: 12189057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free radicals and low-density lipoprotein oxidation by macrophages.
    Wilkins GM; Leake DS
    Biochem Soc Trans; 1990 Dec; 18(6):1170-1. PubMed ID: 2088841
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.