BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 8060897)

  • 21. Novel glyoxalase-I inhibitors possessing a "zinc-binding feature" as potential anticancer agents.
    Al-Balas QA; Hassan MA; Al-Shar'i NA; Mhaidat NM; Almaaytah AM; Al-Mahasneh FM; Isawi IH
    Drug Des Devel Ther; 2016; 10():2623-9. PubMed ID: 27574401
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computer-aided drug discovery of Myc-Max inhibitors as potential therapeutics for prostate cancer.
    Carabet LA; Lallous N; Leblanc E; Ban F; Morin H; Lawn S; Ghaidi F; Lee J; Mills IG; Gleave ME; Rennie PS; Cherkasov A
    Eur J Med Chem; 2018 Dec; 160():108-119. PubMed ID: 30326371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploration of potential ligands against cancer-causing transcription factor E2F3.
    Hussain M; Javeed A; Ashraf M; Siddique S; Riaz A; Mukhtar MM
    Pak J Pharm Sci; 2012 Oct; 25(4):793-801. PubMed ID: 23009996
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computer-aided radiopharmaceutical design.
    Boudreau RJ; Efange SM
    Invest Radiol; 1992 Aug; 27(8):653-8. PubMed ID: 1428744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computer-Aided Drug Design Boosts RAS Inhibitor Discovery.
    Wang G; Bai Y; Cui J; Zong Z; Gao Y; Zheng Z
    Molecules; 2022 Sep; 27(17):. PubMed ID: 36080477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting of AMP-activated protein kinase: prospects for computer-aided drug design.
    Kim J; Yang G; Ha J
    Expert Opin Drug Discov; 2017 Jan; 12(1):47-59. PubMed ID: 27797589
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Expediting the Design, Discovery and Development of Anticancer Drugs using Computational Approaches.
    Basith S; Cui M; Macalino SJY; Choi S
    Curr Med Chem; 2017; 24(42):4753-4778. PubMed ID: 27593958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Computer aided design of anticancer drugs].
    Noguchi T; Ishiguro M
    Gan To Kagaku Ryoho; 1988 Nov; 15(11):3013-7. PubMed ID: 3056273
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular modeling applied to anti-cancer drug development.
    Rosales-Hernandez MC; Bermúdez-Lugo J; Garcia J; Trujillo-Ferrara J; Correa-Basurto J
    Anticancer Agents Med Chem; 2009 Feb; 9(2):230-8. PubMed ID: 19199867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomolecular recognition of antagonists by α7 nicotinic acetylcholine receptor: Antagonistic mechanism and structure-activity relationships studies.
    Peng W; Ding F
    Eur J Pharm Sci; 2015 Aug; 76():119-32. PubMed ID: 25963024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Topoisomerases I: new targets for the treatment of cancer and mechanisms of resistance].
    Pourquier P; Pommier Y
    Bull Cancer; 1998 Dec; Spec No():5-10. PubMed ID: 9932078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applications of computer-aided approaches in the development of hepatitis C antiviral agents.
    Ganesan A; Barakat K
    Expert Opin Drug Discov; 2017 Apr; 12(4):407-425. PubMed ID: 28164720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overview of novel anticancer drug targets.
    Buolamwini JK; Assefa H
    Methods Mol Med; 2003; 85():3-28. PubMed ID: 12710193
    [No Abstract]   [Full Text] [Related]  

  • 34. Computer-aided, rational design of a potent and selective small peptide inhibitor of cyclooxygenase 2 (COX2).
    Rajakrishnan V; Manoj VR; Subba Rao G
    J Biomol Struct Dyn; 2008 Apr; 25(5):535-42. PubMed ID: 18282008
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Macromolecular therapeutics: emerging strategies for drug discovery in the postgenome era.
    Juliano RL; Astriab-Fisher A; Falke D
    Mol Interv; 2001 Apr; 1(1):40-53. PubMed ID: 14993337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular Modeling Studies on Some Important Anticancer Heterocycles: An Overview.
    Kale M; Sonwane G; Nawale R; Mourya V
    Curr Comput Aided Drug Des; 2018; 14(3):178-190. PubMed ID: 29564984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of computer-aided drug design in modern drug discovery.
    Macalino SJ; Gosu V; Hong S; Choi S
    Arch Pharm Res; 2015 Sep; 38(9):1686-701. PubMed ID: 26208641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein-protein interaction inhibitors: advances in anticancer drug design.
    Ferreira LG; Oliva G; Andricopulo AD
    Expert Opin Drug Discov; 2016 Oct; 11(10):957-68. PubMed ID: 27554357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computer-aided design and discovery of protein-protein interaction inhibitors as agents for anti-HIV therapy.
    Veselovsky AV; Zharkova MS; Poroikov VV; Nicklaus MC
    SAR QSAR Environ Res; 2014; 25(6):457-71. PubMed ID: 24716798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In-silico approaches to multi-target drug discovery : computer aided multi-target drug design, multi-target virtual screening.
    Ma XH; Shi Z; Tan C; Jiang Y; Go ML; Low BC; Chen YZ
    Pharm Res; 2010 May; 27(5):739-49. PubMed ID: 20221898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.