These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 8060985)
1. Thermodynamics of inhibitor binding to the catalytic site of glucoamylase from Aspergillus niger determined by displacement titration calorimetry. Sigurskjold BW; Berland CR; Svensson B Biochemistry; 1994 Aug; 33(33):10191-9. PubMed ID: 8060985 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamics of inhibitor binding to mutant forms of glucoamylase from Aspergillus niger determined by isothermal titration calorimetry. Berland CR; Sigurskjold BW; Stoffer B; Frandsen TP; Svensson B Biochemistry; 1995 Aug; 34(32):10153-61. PubMed ID: 7640269 [TBL] [Abstract][Full Text] [Related]
3. Thermodynamics of binding of heterobidentate ligands consisting of spacer-connected acarbose and beta-cyclodextrin to the catalytic and starch-binding domains of glucoamylase from Aspergillus niger shows that the catalytic and starch-binding sites are in close proximity in space. Sigurskjold BW; Christensen T; Payre N; Cottaz S; Driguez H; Svensson B Biochemistry; 1998 Jul; 37(29):10446-52. PubMed ID: 9671514 [TBL] [Abstract][Full Text] [Related]
4. Roles of the aromatic side chains in the binding of substrates, inhibitors, and cyclomalto-oligosaccharides to the glucoamylase from Aspergillus niger probed by perturbation difference spectroscopy, chemical modification, and mutagenesis. Svensson B; Sierks MR Carbohydr Res; 1992 Apr; 227():29-44. PubMed ID: 1499029 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamics of reversible and irreversible unfolding and domain interactions of glucoamylase from Aspergillus niger studied by differential scanning and isothermal titration calorimetry. Christensen T; Svensson B; Sigurskjold BW Biochemistry; 1999 May; 38(19):6300-10. PubMed ID: 10320360 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamics of ligand binding to the starch-binding domain of glucoamylase from Aspergillus niger. Sigurskjold BW; Svensson B; Williamson G; Driguez H Eur J Biochem; 1994 Oct; 225(1):133-41. PubMed ID: 7925430 [TBL] [Abstract][Full Text] [Related]
7. Enzymatic properties of the cysteinesulfinic acid derivative of the catalytic-base mutant Glu400-->Cys of glucoamylase from Aspergillus awamori. Fierobe HP; Clarke AJ; Tull D; Svensson B Biochemistry; 1998 Mar; 37(11):3753-9. PubMed ID: 9521694 [TBL] [Abstract][Full Text] [Related]
8. Crystallographic complexes of glucoamylase with maltooligosaccharide analogs: relationship of stereochemical distortions at the nonreducing end to the catalytic mechanism. Aleshin AE; Stoffer B; Firsov LM; Svensson B; Honzatko RB Biochemistry; 1996 Jun; 35(25):8319-28. PubMed ID: 8679589 [TBL] [Abstract][Full Text] [Related]
9. Steady-state kinetic and calorimetric studies on the binding of Aspergillus niger glucoamylase with gluconolactone, 1-deoxynojirimycin, and beta-cyclodextrin. Tanaka A Biosci Biotechnol Biochem; 1996 Dec; 60(12):2055-8. PubMed ID: 8988638 [TBL] [Abstract][Full Text] [Related]
10. Refined structure for the complex of D-gluco-dihydroacarbose with glucoamylase from Aspergillus awamori var. X100 to 2.2 A resolution: dual conformations for extended inhibitors bound to the active site of glucoamylase. Stoffer B; Aleshin AE; Firsov LM; Svensson B; Honzatko RB FEBS Lett; 1995 Jan; 358(1):57-61. PubMed ID: 7821430 [TBL] [Abstract][Full Text] [Related]
12. Reaction mechanisms of Trp120-->Phe and wild-type glucoamylases from Aspergillus niger. Interactions with maltooligodextrins and acarbose. Olsen K; Christensen U; Sierks MR; Svensson B Biochemistry; 1993 Sep; 32(37):9686-93. PubMed ID: 8373772 [TBL] [Abstract][Full Text] [Related]
13. Energetic and mechanistic studies of glucoamylase using molecular recognition of maltose OH groups coupled with site-directed mutagenesis. Sierks MR; Svensson B Biochemistry; 2000 Jul; 39(29):8585-92. PubMed ID: 10913265 [TBL] [Abstract][Full Text] [Related]
14. Refined structure for the complex of acarbose with glucoamylase from Aspergillus awamori var. X100 to 2.4-A resolution. Aleshin AE; Firsov LM; Honzatko RB J Biol Chem; 1994 Jun; 269(22):15631-9. PubMed ID: 8195212 [TBL] [Abstract][Full Text] [Related]
15. Steady-state inhibitory kinetic studies on the ligand binding modes of Aspergillus niger glucoamylase. Tanaka A; Ohya M; Yamamoto T; Nakagawa C; Tsuji T; Senoo K; Obata H Biosci Biotechnol Biochem; 1999 Sep; 63(9):1548-52. PubMed ID: 10540741 [TBL] [Abstract][Full Text] [Related]
16. Physicochemical characterisation of the two active site mutants Trp(52)-->Phe and Asp(55)-->Val of glucoamylase from Aspergillus niger. Christensen T; Frandsen TP; Kaarsholm NC; Svensson B; Sigurskjold BW Biochim Biophys Acta; 2002 Dec; 1601(2):163-71. PubMed ID: 12445478 [TBL] [Abstract][Full Text] [Related]
17. Purification of glucoamylase by acarbose (BAY g-5421) affinity chromatography. Ono K; Smith EE Biotechnol Appl Biochem; 1986; 8(2-3):201-9. PubMed ID: 3091050 [TBL] [Abstract][Full Text] [Related]
18. [Carboxyl groups in the active center of glucoamylase from Aspergillus awamori]. Savel'ev AN; Firsov LM Biokhimiia; 1982 Oct; 47(10):1618-20. PubMed ID: 6816298 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011 complexed with 1-deoxynojirimycin at 2.0 A resolution. Kanai R; Haga K; Yamane K; Harata K J Biochem; 2001 Apr; 129(4):593-8. PubMed ID: 11275559 [TBL] [Abstract][Full Text] [Related]
20. Acarbose and 1-deoxynojirimycin inhibit maltose and maltooligosaccharide hydrolysis of human small intestinal glucoamylase-maltase in two different substrate-induced modes. Breitmeier D; Günther S; Heymann H Arch Biochem Biophys; 1997 Oct; 346(1):7-14. PubMed ID: 9328278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]