These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 8060990)
1. Analysis of hydrogen bonding in enzyme-substrate complexes of chloramphenicol acetyltransferase by infrared spectroscopy and site-directed mutagenesis. Murray IA; Derrick JP; White AJ; Drabble K; Wharton CW; Shaw WV Biochemistry; 1994 Aug; 33(33):9826-30. PubMed ID: 8060990 [TBL] [Abstract][Full Text] [Related]
2. Analysis of the binding of 1,3-diacetylchloramphenicol to chloramphenicol acetyltransferase by isotope-edited 1H NMR and site-directed mutagenesis. Derrick JP; Lian LY; Roberts GC; Shaw WV Biochemistry; 1992 Sep; 31(35):8191-5. PubMed ID: 1525158 [TBL] [Abstract][Full Text] [Related]
3. Alternative binding modes for chloramphenicol and 1-substituted chloramphenicol analogues revealed by site-directed mutagenesis and X-ray crystallography of chloramphenicol acetyltransferase. Murray IA; Lewendon A; Williams JA; Cullis PM; Shaw WV; Leslie AG Biochemistry; 1991 Apr; 30(15):3763-70. PubMed ID: 2015231 [TBL] [Abstract][Full Text] [Related]
4. Replacement of catalytic histidine-195 of chloramphenicol acetyltransferase: evidence for a general base role for glutamate. Lewendon A; Murray IA; Shaw WV; Gibbs MR; Leslie AG Biochemistry; 1994 Feb; 33(7):1944-50. PubMed ID: 7906544 [TBL] [Abstract][Full Text] [Related]
5. Kinetic mechanism of chloramphenicol acetyltransferase: the role of ternary complex interconversion in rate determination. Ellis J; Bagshaw CR; Shaw WV Biochemistry; 1995 Dec; 34(51):16852-9. PubMed ID: 8527461 [TBL] [Abstract][Full Text] [Related]
6. Steroid recognition by chloramphenicol acetyltransferase: engineering and structural analysis of a high affinity fusidic acid binding site. Murray IA; Cann PA; Day PJ; Derrick JP; Sutcliffe MJ; Shaw WV; Leslie AG J Mol Biol; 1995 Dec; 254(5):993-1005. PubMed ID: 7500366 [TBL] [Abstract][Full Text] [Related]
7. Transition state stabilization by chloramphenicol acetyltransferase. Role of a water molecule bound to threonine 174. Lewendon A; Shaw WV J Biol Chem; 1993 Oct; 268(28):20997-1001. PubMed ID: 8407936 [TBL] [Abstract][Full Text] [Related]
8. Substitutions in the active site of chloramphenicol acetyltransferase: role of a conserved aspartate. Lewendon A; Murray IA; Kleanthous C; Cullis PM; Shaw WV Biochemistry; 1988 Sep; 27(19):7385-90. PubMed ID: 3061455 [TBL] [Abstract][Full Text] [Related]
9. Evidence for transition-state stabilization by serine-148 in the catalytic mechanism of chloramphenicol acetyltransferase. Lewendon A; Murray IA; Shaw WV; Gibbs MR; Leslie AG Biochemistry; 1990 Feb; 29(8):2075-80. PubMed ID: 2109633 [TBL] [Abstract][Full Text] [Related]
10. Intrinsic fluorescence of chloramphenicol acetyltransferase: responses to ligand binding and assignment of the contributions of tryptophan residues by site-directed mutagenesis. Ellis J; Murray IA; Shaw WV Biochemistry; 1991 Nov; 30(44):10799-805. PubMed ID: 1931999 [TBL] [Abstract][Full Text] [Related]
11. Acetyl coenzyme A binding by chloramphenicol acetyltransferase: long-range electrostatic determinants of coenzyme A recognition. Day PJ; Shaw WV; Gibbs MR; Leslie AG Biochemistry; 1992 May; 31(17):4198-205. PubMed ID: 1567867 [TBL] [Abstract][Full Text] [Related]
12. Acetyl coenzyme A binding by chloramphenicol acetyltransferase. Hydrophobic determinants of recognition and catalysis. Day PJ; Shaw WV J Biol Chem; 1992 Mar; 267(8):5122-7. PubMed ID: 1544895 [TBL] [Abstract][Full Text] [Related]
13. Stabilization of the imidazole ring of His-195 at the active site of chloramphenicol acetyltransferase. Murray IA; Lewendon A; Shaw WV J Biol Chem; 1991 Jun; 266(18):11695-8. PubMed ID: 2050670 [TBL] [Abstract][Full Text] [Related]
14. Ligand interaction energies and molecular recognition by chloramphenicol acetyltransferase. Cullis PM; Lewendon A; Shaw WV; Williams JA Biochemistry; 1991 Apr; 30(15):3758-62. PubMed ID: 1849737 [TBL] [Abstract][Full Text] [Related]
15. Substrate binding to chloramphenicol acetyltransferase: evidence for negative cooperativity from equilibrium and kinetic constants for binary and ternary complexes. Ellis J; Bagshaw CR; Shaw WV Biochemistry; 1991 Nov; 30(44):10806-13. PubMed ID: 1932000 [TBL] [Abstract][Full Text] [Related]
16. The strength of dehalogenase-substrate hydrogen bonding correlates with the rate of Meisenheimer intermediate formation. Dong J; Lu X; Wei Y; Luo L; Dunaway-Mariano D; Carey PR Biochemistry; 2003 Aug; 42(31):9482-90. PubMed ID: 12899635 [TBL] [Abstract][Full Text] [Related]
17. Properties of hybrid active sites in oligomeric proteins: kinetic and ligand binding studies with chloramphenicol acetyltransferase trimers. Day PJ; Murray IA; Shaw WV Biochemistry; 1995 May; 34(19):6416-22. PubMed ID: 7756272 [TBL] [Abstract][Full Text] [Related]
18. Elimination of a reactive thiol group from the active site of chloramphenicol acetyltransferase. Lewendon A; Shaw WV Biochem J; 1990 Dec; 272(2):499-504. PubMed ID: 2268277 [TBL] [Abstract][Full Text] [Related]
19. Mutations in the chloramphenicol acetyltransferase (S61G, Y105C) increase accumulated amounts and resistance in Pseudomonas aeruginosa. Wang J; Liu JH FEMS Microbiol Lett; 2004 Jul; 236(2):197-204. PubMed ID: 15251197 [TBL] [Abstract][Full Text] [Related]
20. Refined crystal structure of type III chloramphenicol acetyltransferase at 1.75 A resolution. Leslie AG J Mol Biol; 1990 May; 213(1):167-86. PubMed ID: 2187098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]