These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 8061003)
1. Critical role of phenylalanine 34 of human dihydrofolate reductase in substrate and inhibitor binding and in catalysis. Nakano T; Spencer HT; Appleman JR; Blakley RL Biochemistry; 1994 Aug; 33(33):9945-52. PubMed ID: 8061003 [TBL] [Abstract][Full Text] [Related]
2. Methotrexate-resistant variants of human dihydrofolate reductase with substitutions of leucine 22. Kinetics, crystallography, and potential as selectable markers. Lewis WS; Cody V; Galitsky N; Luft JR; Pangborn W; Chunduru SK; Spencer HT; Appleman JR; Blakley RL J Biol Chem; 1995 Mar; 270(10):5057-64. PubMed ID: 7890613 [TBL] [Abstract][Full Text] [Related]
3. Role of the active-site carboxylate in dihydrofolate reductase: kinetic and spectroscopic studies of the aspartate 26-->asparagine mutant of the Lactobacillus casei enzyme. Basran J; Casarotto MG; Barsukov IL; Roberts GC Biochemistry; 1995 Mar; 34(9):2872-82. PubMed ID: 7893701 [TBL] [Abstract][Full Text] [Related]
4. Effects of conversion of phenylalanine-31 to leucine on the function of human dihydrofolate reductase. Prendergast NJ; Appleman JR; Delcamp TJ; Blakley RL; Freisheim JH Biochemistry; 1989 May; 28(11):4645-50. PubMed ID: 2765506 [TBL] [Abstract][Full Text] [Related]
6. Investigation of the functional role of tryptophan-22 in Escherichia coli dihydrofolate reductase by site-directed mutagenesis. Warren MS; Brown KA; Farnum MF; Howell EE; Kraut J Biochemistry; 1991 Nov; 30(46):11092-103. PubMed ID: 1932031 [TBL] [Abstract][Full Text] [Related]
7. The importance of loop region residues 40-46 in human dihydrofolate reductase as revealed by site-directed mutagenesis. Tan XH; Huang SM; Ratnam M; Thompson PD; Freisheim JH J Biol Chem; 1990 May; 265(14):8027-32. PubMed ID: 2186034 [TBL] [Abstract][Full Text] [Related]
8. Role of ionic interactions in ligand binding and catalysis of R67 dihydrofolate reductase. Hicks SN; Smiley RD; Hamilton JB; Howell EE Biochemistry; 2003 Sep; 42(36):10569-78. PubMed ID: 12962480 [TBL] [Abstract][Full Text] [Related]
9. Probing the functional role of phenylalanine-31 of Escherichia coli dihydrofolate reductase by site-directed mutagenesis. Chen JT; Taira K; Tu CP; Benkovic SJ Biochemistry; 1987 Jun; 26(13):4093-100. PubMed ID: 3307917 [TBL] [Abstract][Full Text] [Related]
10. Site-directed mutagenesis of mouse dihydrofolate reductase. Mutants with increased resistance to methotrexate and trimethoprim. Thillet J; Absil J; Stone SR; Pictet R J Biol Chem; 1988 Sep; 263(25):12500-8. PubMed ID: 3045118 [TBL] [Abstract][Full Text] [Related]
11. Probing electrostatic channeling in protozoal bifunctional thymidylate synthase-dihydrofolate reductase using site-directed mutagenesis. Atreya CE; Johnson EF; Williamson J; Chang SY; Liang PH; Anderson KS J Biol Chem; 2003 Aug; 278(31):28901-11. PubMed ID: 12754260 [TBL] [Abstract][Full Text] [Related]
12. Engineering specificity for folate into dihydrofolate reductase from Escherichia coli. Posner BA; Li L; Bethell R; Tsuji T; Benkovic SJ Biochemistry; 1996 Feb; 35(5):1653-63. PubMed ID: 8634297 [TBL] [Abstract][Full Text] [Related]
13. Nonadditivity of mutational effects at the folate binding site of Escherichia coli dihydrofolate reductase. Huang Z; Wagner CR; Benkovic SJ Biochemistry; 1994 Sep; 33(38):11576-85. PubMed ID: 7918371 [TBL] [Abstract][Full Text] [Related]
14. Controlling enzyme inhibition using an expanded set of genetically encoded amino acids. Zheng S; Kwon I Biotechnol Bioeng; 2013 Sep; 110(9):2361-70. PubMed ID: 23568807 [TBL] [Abstract][Full Text] [Related]
15. Effects of substitution of Thr63 by alanine on the structure and function of Lactobacillus casei dihydrofolate reductase. Thomas JA; Arnold JR; Basran J; Andrews J; Roberts GC; Birdsall B; Feeney J Protein Eng; 1994 Jun; 7(6):783-92. PubMed ID: 7937709 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of the reaction catalyzed by dihydrofolate reductase from Escherichia coli: pH and deuterium isotope effects with NADPH as the variable substrate. Morrison JF; Stone SR Biochemistry; 1988 Jul; 27(15):5499-506. PubMed ID: 3052578 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of substrate, coenzyme, and inhibitor binding to Escherichia coli dihydrofolate reductase. Cayley PJ; Dunn SM; King RW Biochemistry; 1981 Feb; 20(4):874-9. PubMed ID: 7011378 [TBL] [Abstract][Full Text] [Related]
18. Dihydrofolate reductase from Escherichia coli: the kinetic mechanism with NADPH and reduced acetylpyridine adenine dinucleotide phosphate as substrates. Stone SR; Morrison JF Biochemistry; 1988 Jul; 27(15):5493-9. PubMed ID: 3052577 [TBL] [Abstract][Full Text] [Related]
19. Probing the role of two hydrophobic active site residues in the human dihydrofolate reductase by site-directed mutagenesis. Schweitzer BI; Srimatkandada S; Gritsman H; Sheridan R; Venkataraghavan R; Bertino JR J Biol Chem; 1989 Dec; 264(34):20786-95. PubMed ID: 2684985 [TBL] [Abstract][Full Text] [Related]
20. Conformational changes in the active site loops of dihydrofolate reductase during the catalytic cycle. Venkitakrishnan RP; Zaborowski E; McElheny D; Benkovic SJ; Dyson HJ; Wright PE Biochemistry; 2004 Dec; 43(51):16046-55. PubMed ID: 15609999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]