BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 8061210)

  • 1. The transition from inhomogeneous to homogeneous kinetics in CO binding to myoglobin.
    Agmon N; Doster W; Post F
    Biophys J; 1994 May; 66(5):1612-22. PubMed ID: 8061210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional distributions of activation enthalpy and entropy from kinetics by the maximum entropy method.
    Steinbach PJ
    Biophys J; 1996 Mar; 70(3):1521-8. PubMed ID: 8785309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of protein relaxation to ligand binding and migration in myoglobin.
    Agmon N
    Biophys J; 2004 Sep; 87(3):1537-43. PubMed ID: 15345534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CO vibration as a probe of ligand dissociation and transfer in myoglobin.
    Polack T; Ogilvie JP; Franzen S; Vos MH; Joffre M; Martin JL; Alexandrou A
    Phys Rev Lett; 2004 Jul; 93(1):018102. PubMed ID: 15324023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heme-solvent coupling: a Mössbauer study of myoglobin in sucrose.
    Lichtenegger H; Doster W; Kleinert T; Birk A; Sepiol B; Vogl G
    Biophys J; 1999 Jan; 76(1 Pt 1):414-22. PubMed ID: 9876153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic hole burning, hole filling, and conformational relaxation in heme proteins: direct evidence for the functional significance of a hierarchy of dynamical processes.
    Huang J; Ridsdale A; Wang J; Friedman JM
    Biochemistry; 1997 Nov; 36(47):14353-65. PubMed ID: 9398153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural relaxation and nonexponential kinetics of CO-binding to horse myoglobin. Multiple flash photolysis experiments.
    Post F; Doster W; Karvounis G; Settles M
    Biophys J; 1993 Jun; 64(6):1833-42. PubMed ID: 8369410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast CO Kinetics in Heme Proteins: Adiabatic Ligand Binding and Heavy Atom Tunneling.
    Benabbas A; Sun Y; Poulos TL; Champion PM
    J Am Chem Soc; 2017 Nov; 139(44):15738-15747. PubMed ID: 28984134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural dynamics of ligand diffusion in the protein matrix: A study on a new myoglobin mutant Y(B10) Q(E7) R(E10).
    Brunori M; Cutruzzolà F; Savino C; Travaglini-Allocatelli C; Vallone B; Gibson QH
    Biophys J; 1999 Mar; 76(3):1259-69. PubMed ID: 10049310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand binding to heme proteins. VI. Interconversion of taxonomic substates in carbonmonoxymyoglobin.
    Johnson JB; Lamb DC; Frauenfelder H; Müller JD; McMahon B; Nienhaus GU; Young RD
    Biophys J; 1996 Sep; 71(3):1563-73. PubMed ID: 8874030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of relaxation processes helps to define molecular states in biological systems.
    Alben JO
    Biophys J; 1993 Oct; 65(4):1357-8. PubMed ID: 8274626
    [No Abstract]   [Full Text] [Related]  

  • 12. Solvent composition and viscosity effects on the kinetics of CO binding to horse myoglobin.
    Kleinert T; Doster W; Leyser H; Petry W; Schwarz V; Settles M
    Biochemistry; 1998 Jan; 37(2):717-33. PubMed ID: 9425096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global mapping of structural solutions provided by the extended X-ray absorption fine structure ab initio code FEFF 6.01: structure of the cryogenic photoproduct of the myoglobin-carbon monoxide complex.
    Chance MR; Miller LM; Fischetti RF; Scheuring E; Huang WX; Sclavi B; Hai Y; Sullivan M
    Biochemistry; 1996 Jul; 35(28):9014-23. PubMed ID: 8703904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-dependent heme kinetics with nonexponential binding and barrier relaxation in the absence of protein conformational substates.
    Ye X; Ionascu D; Gruia F; Yu A; Benabbas A; Champion PM
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14682-7. PubMed ID: 17804802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural dynamics of myoglobin: effect of internal cavities on ligand migration and binding.
    Nienhaus K; Deng P; Kriegl JM; Nienhaus GU
    Biochemistry; 2003 Aug; 42(32):9647-58. PubMed ID: 12911306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin.
    Chu K; Vojtchovský J; McMahon BH; Sweet RM; Berendzen J; Schlichting I
    Nature; 2000 Feb; 403(6772):921-3. PubMed ID: 10706294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of protein function by exogenous ligands in protein cavities: CO binding to a myoglobin cavity mutant containing unnatural proximal ligands.
    Decatur SM; DePillis GD; Boxer SG
    Biochemistry; 1996 Apr; 35(13):3925-32. PubMed ID: 8672423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volume and enthalpy profiles of CO rebinding to horse heart myoglobin.
    Miksovská J; Day JH; Larsen RW
    J Biol Inorg Chem; 2003 Jul; 8(6):621-5. PubMed ID: 12733053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive line-shape narrowing in low-temperature inhomogeneous geminate recombination of CO to myoglobin.
    Agmon N
    Biochemistry; 1988 May; 27(9):3507-11. PubMed ID: 3390449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fractional calculus approach to self-similar protein dynamics.
    Glöckle WG; Nonnenmacher TF
    Biophys J; 1995 Jan; 68(1):46-53. PubMed ID: 7711266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.