BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 8061211)

  • 1. Probing alpha-helical secondary structure at a specific site in model peptides via restriction of tryptophan side-chain rotamer conformation.
    Willis KJ; Neugebauer W; Sikorska M; Szabo AG
    Biophys J; 1994 May; 66(5):1623-30. PubMed ID: 8061211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan rotamer distributions in amphipathic peptides at a lipid surface.
    Clayton AH; Sawyer WH
    Biophys J; 1999 Jun; 76(6):3235-42. PubMed ID: 10354448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of tryptophan fluorescence intensity decay parameters with 1H NMR-determined rotamer conformations: [tryptophan2]oxytocin.
    Ross JB; Wyssbrod HR; Porter RA; Schwartz GP; Michaels CA; Laws WR
    Biochemistry; 1992 Feb; 31(6):1585-94. PubMed ID: 1737015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing local secondary structure by fluorescence: time-resolved and circular dichroism studies of highly purified neurotoxins.
    Dahms TE; Szabo AG
    Biophys J; 1995 Aug; 69(2):569-76. PubMed ID: 8527671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides.
    Vagt T; Zschörnig O; Huster D; Koksch B
    Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A concerted tryptophanyl-adenylate-dependent conformational change in Bacillus subtilis tryptophanyl-tRNA synthetase revealed by the fluorescence of Trp92.
    Hogue CW; Doublié S; Xue H; Wong JT; Carter CW; Szabo AG
    J Mol Biol; 1996 Jul; 260(3):446-66. PubMed ID: 8757806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformation of parathyroid hormone: time-resolved fluorescence studies.
    Willis KJ; Szabo AG
    Biochemistry; 1992 Sep; 31(37):8924-31. PubMed ID: 1390680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-specific tryptophan dynamics in class A amphipathic helical peptides at a phospholipid bilayer interface.
    Clayton AH; Sawyer WH
    Biophys J; 2000 Aug; 79(2):1066-73. PubMed ID: 10920036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Location and dynamics of tryptophan in transmembrane alpha-helix peptides: a fluorescence and circular dichroism study.
    de Foresta B; Tortech L; Vincent M; Gallay J
    Eur Biophys J; 2002 Jun; 31(3):185-97. PubMed ID: 12029331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-fluorescence correlations in a single tryptophan mutant of carp parvalbumin: solution structure, backbone and side-chain dynamics.
    Moncrieffe MC; Juranic N; Kemple MD; Potter JD; Macura S; Prendergast FG
    J Mol Biol; 2000 Mar; 297(1):147-63. PubMed ID: 10704313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational effects on tryptophan fluorescence in cyclic hexapeptides.
    Pan CP; Barkley MD
    Biophys J; 2004 Jun; 86(6):3828-35. PubMed ID: 15189879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of tryptophan emission wavelength on conformation in cyclic hexapeptides.
    Pan CP; Callis PR; Barkley MD
    J Phys Chem B; 2006 Apr; 110(13):7009-16. PubMed ID: 16571015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Similarity of fluorescence lifetime distributions for single tryptophan proteins in the random coil state.
    Swaminathan R; Krishnamoorthy G; Periasamy N
    Biophys J; 1994 Nov; 67(5):2013-23. PubMed ID: 7858139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of solvents and leucine configuration at position 5 on tryptophan fluorescence in cyclic enkephalin analogues.
    Malicka J; Groth M; Karolczak J; Czaplewski C; Liwo A; Wiczk W
    Biopolymers; 2001 Apr; 58(4):447-57. PubMed ID: 11180057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the environment of tryptophan in a hydrophobic model peptide upon aggregation and interaction with lipid vesicles: a steady state and time resolved fluorescence study.
    Joseph M; Nagaraj R
    Indian J Biochem Biophys; 1998 Apr; 35(2):67-75. PubMed ID: 9753864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The slow folding reaction of barstar: the core tryptophan region attains tight packing before substantial secondary and tertiary structure formation and final compaction of the polypeptide chain.
    Sridevi K; Juneja J; Bhuyan AK; Krishnamoorthy G; Udgaonkar JB
    J Mol Biol; 2000 Sep; 302(2):479-95. PubMed ID: 10970747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free energies of amino acid side-chain rotamers in alpha-helices, beta-sheets and alpha-helix N-caps.
    Stapley BJ; Doig AJ
    J Mol Biol; 1997 Sep; 272(3):456-64. PubMed ID: 9325103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induced conformational states of amphipathic peptides in aqueous/lipid environments.
    Blondelle SE; Ostresh JM; Houghten RA; Pérez-Payá E
    Biophys J; 1995 Jan; 68(1):351-9. PubMed ID: 7711261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of preferred binding domains on peptide retention behavior in reversed-phase chromatography: amphipathic alpha-helices.
    Zhou NE; Mant CT; Hodges RS
    Pept Res; 1990; 3(1):8-20. PubMed ID: 2134049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.