These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8061297)

  • 1. A positron emission tomography study of oculomotor imagery.
    Lang W; Petit L; Höllinger P; Pietrzyk U; Tzourio N; Mazoyer B; Berthoz A
    Neuroreport; 1994 Apr; 5(8):921-4. PubMed ID: 8061297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extraretinal modulation of cerebral blood flow in the human visual cortex: implications for saccadic suppression.
    Paus T; Marrett S; Worsley KJ; Evans AC
    J Neurophysiol; 1995 Nov; 74(5):2179-83. PubMed ID: 8592206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The activation pattern in normal humans during suppression, imagination and performance of saccadic eye movements.
    Law I; Svarer C; Holm S; Paulson OB
    Acta Physiol Scand; 1997 Nov; 161(3):419-34. PubMed ID: 9401596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PET study of human voluntary saccadic eye movements in darkness: effect of task repetition on the activation pattern.
    Dejardin S; Dubois S; Bodart JM; Schiltz C; Delinte A; Michel C; Roucoux A; Crommelinck M
    Eur J Neurosci; 1998 Jul; 10(7):2328-36. PubMed ID: 9749761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional anatomy of a prelearned sequence of horizontal saccades in humans.
    Petit L; Orssaud C; Tzourio N; Crivello F; Berthoz A; Mazoyer B
    J Neurosci; 1996 Jun; 16(11):3714-26. PubMed ID: 8642414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of cerebral cortex in the generation of voluntary saccades: a positron emission tomographic study.
    Fox PT; Fox JM; Raichle ME; Burde RM
    J Neurophysiol; 1985 Aug; 54(2):348-69. PubMed ID: 3875696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human cortical regions activated by wide-field visual motion: an H2(15)O PET study.
    Cheng K; Fujita H; Kanno I; Miura S; Tanaka K
    J Neurophysiol; 1995 Jul; 74(1):413-27. PubMed ID: 7472342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural correlates of visuospatial imagery.
    Suchan B; Yágüez L; Wunderlich G; Canavan AG; Herzog H; Tellmann L; Hömberg V; Seitz RJ
    Behav Brain Res; 2002 Apr; 131(1-2):163-8. PubMed ID: 11844583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual memory, visual imagery, and visual recognition of large field patterns by the human brain: functional anatomy by positron emission tomography.
    Roland PE; Gulyás B
    Cereb Cortex; 1995; 5(1):79-93. PubMed ID: 7719132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural control of fast-regular saccades and antisaccades: an investigation using positron emission tomography.
    Doricchi F; Perani D; Incoccia C; Grassi F; Cappa SF; Bettinardi V; Galati G; Pizzamiglio L; Fazio F
    Exp Brain Res; 1997 Aug; 116(1):50-62. PubMed ID: 9305814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in rCBF during grasping in humans examined by PET.
    Matsumura M; Kawashima R; Naito E; Satoh K; Takahashi T; Yanagisawa T; Fukuda H
    Neuroreport; 1996 Feb; 7(3):749-52. PubMed ID: 8733737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical control of saccade in normal and schizophrenic subjects: a PET study using a task-evoked rCBF paradigm.
    Nakashima Y; Momose T; Sano I; Katayama S; Nakajima T; Niwa S; Matsushita M
    Schizophr Res; 1994 Jun; 12(3):259-64. PubMed ID: 8054318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional neuroanatomy of antisaccade eye movements investigated with positron emission tomography.
    O'Driscoll GA; Alpert NM; Matthysse SW; Levy DL; Rauch SL; Holzman PS
    Proc Natl Acad Sci U S A; 1995 Jan; 92(3):925-9. PubMed ID: 7846080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human brain mapping under increasing cognitive complexity using regional cerebral blood flow measurements and positron emission tomography.
    Law I
    Dan Med Bull; 2007 Nov; 54(4):289-305. PubMed ID: 18208679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional MRI mapping of occipital and frontal cortical activity during voluntary and imagined saccades.
    Bodis-Wollner I; Bucher SF; Seelos KC; Paulus W; Reiser M; Oertel WH
    Neurology; 1997 Aug; 49(2):416-20. PubMed ID: 9270570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oculomotor sequence learning: a positron emission tomography study.
    Kawashima R; Tanji J; Okada K; Sugiura M; Sato K; Kinomura S; Inoue K; Ogawa A; Fukuda H
    Exp Brain Res; 1998 Sep; 122(1):1-8. PubMed ID: 9772106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of human frontal eye fields: anatomical and functional findings of functional magnetic resonance imaging and intracerebral electrical stimulation.
    Lobel E; Kahane P; Leonards U; Grosbras M; Lehéricy S; Le Bihan D; Berthoz A
    J Neurosurg; 2001 Nov; 95(5):804-15. PubMed ID: 11702871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eye-head coordination abnormalities and regional cerebral blood flow in Alzheimer's disease.
    Nakano N; Hatakeyama Y; Fukatsu R; Hayashi S; Fujii M; Fujimori K; Takahata N
    Prog Neuropsychopharmacol Biol Psychiatry; 1999 Aug; 23(6):1053-62. PubMed ID: 10621949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.