These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8061516)

  • 1. Selection of antisense oligonucleotides on the basis of genomic frequency of the target sequence.
    Han J; Zhu Z; Hsu C; Finley WH
    Antisense Res Dev; 1994; 4(1):53-65. PubMed ID: 8061516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimated number of off-target candidate sites for antisense oligonucleotides in human mRNA sequences.
    Yoshida T; Naito Y; Sasaki K; Uchida E; Sato Y; Naito M; Kawanishi T; Obika S; Inoue T
    Genes Cells; 2018 Jun; 23(6):448-455. PubMed ID: 29667281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNase H1-Dependent Antisense Oligonucleotides Are Robustly Active in Directing RNA Cleavage in Both the Cytoplasm and the Nucleus.
    Liang XH; Sun H; Nichols JG; Crooke ST
    Mol Ther; 2017 Sep; 25(9):2075-2092. PubMed ID: 28663102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting antisense oligonucleotide inhibitory efficacy: a computational approach using histograms and thermodynamic indices.
    Stull RA; Taylor LA; Szoka FC
    Nucleic Acids Res; 1992 Jul; 20(13):3501-8. PubMed ID: 1352874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bias in nucleotide composition of antisense oligonucleotides.
    Smetsers TF; Boezeman JB; Mensink EJ
    Antisense Nucleic Acid Drug Dev; 1996; 6(1):63-7. PubMed ID: 8783797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining the factors that contribute to on-target specificity of antisense oligonucleotides.
    Lima WF; Vickers TA; Nichols J; Li C; Crooke ST
    PLoS One; 2014; 9(7):e101752. PubMed ID: 25072142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific inhibition of expression of a human collagen gene (COL1A1) with modified antisense oligonucleotides. The most effective target sites are clustered in double-stranded regions of the predicted secondary structure for the mRNA.
    Laptev AV; Lu Z; Colige A; Prockop DJ
    Biochemistry; 1994 Sep; 33(36):11033-9. PubMed ID: 8086420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of off-target effects of gapmer antisense oligonucleotides using human cells.
    Yoshida T; Naito Y; Yasuhara H; Sasaki K; Kawaji H; Kawai J; Naito M; Okuda H; Obika S; Inoue T
    Genes Cells; 2019 Dec; 24(12):827-835. PubMed ID: 31637814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some ASOs that bind in the coding region of mRNAs and induce RNase H1 cleavage can cause increases in the pre-mRNAs that may blunt total activity.
    Liang XH; Nichols JG; De Hoyos CL; Crooke ST
    Nucleic Acids Res; 2020 Sep; 48(17):9840-9858. PubMed ID: 32870273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of troponin C production without affecting other muscle protein synthesis by the antisense oligodeoxynucleotide.
    Ojala J; Choudhury M; Bag J
    Antisense Nucleic Acid Drug Dev; 1997 Feb; 7(1):31-8. PubMed ID: 9055036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the effect of GalNAc and phosphorothioate backbone on binding of antisense oligonucleotides to the asialoglycoprotein receptor.
    Schmidt K; Prakash TP; Donner AJ; Kinberger GA; Gaus HJ; Low A; Østergaard ME; Bell M; Swayze EE; Seth PP
    Nucleic Acids Res; 2017 Mar; 45(5):2294-2306. PubMed ID: 28158620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting of repeated sequences unique to a gene results in significant increases in antisense oligonucleotide potency.
    Vickers TA; Freier SM; Bui HH; Watt A; Crooke ST
    PLoS One; 2014; 9(10):e110615. PubMed ID: 25334092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antisense therapeutics: is it as simple as complementary base recognition?
    Agrawal S; Kandimalla ER
    Mol Med Today; 2000 Feb; 6(2):72-81. PubMed ID: 10652480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translation can affect the antisense activity of RNase H1-dependent oligonucleotides targeting mRNAs.
    Liang XH; Nichols JG; Sun H; Crooke ST
    Nucleic Acids Res; 2018 Jan; 46(1):293-313. PubMed ID: 29165591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the Activity of Antisense Oligonucleotides Targeting Multiple Genes by RNA-Sequencing.
    Michel S; Klar R; Jaschinski F
    Nucleic Acid Ther; 2021 Dec; 31(6):427-435. PubMed ID: 34251864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antisense oligonucleotides: from design to therapeutic application.
    Chan JH; Lim S; Wong WS
    Clin Exp Pharmacol Physiol; 2006; 33(5-6):533-40. PubMed ID: 16700890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying Suitable Target Regions and Analyzing Off-Target Effects of Therapeutic Oligonucleotides.
    Pedersen L; Hagedorn PH; Koch T
    Methods Mol Biol; 2019; 2036():261-282. PubMed ID: 31410803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AOBase: a database for antisense oligonucleotides selection and design.
    Bo X; Lou S; Sun D; Yang J; Wang S
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D664-7. PubMed ID: 16381954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the effects of chemically different linkers on hepatic accumulations, cell tropism and gene silencing ability of cholesterol-conjugated antisense oligonucleotides.
    Wada S; Yasuhara H; Wada F; Sawamura M; Waki R; Yamamoto T; Harada-Shiba M; Obika S
    J Control Release; 2016 Mar; 226():57-65. PubMed ID: 26855051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2'-modifications and enhances antisense activity.
    Liang XH; Shen W; Sun H; Kinberger GA; Prakash TP; Nichols JG; Crooke ST
    Nucleic Acids Res; 2016 May; 44(8):3892-907. PubMed ID: 26945041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.