These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 8061869)

  • 41. Acoustic and visual characteristics of cavitation induced by mechanical heart valves.
    Sohn K; Manning KB; Fontaine AA; Tarbell JM; Deutsch S
    J Heart Valve Dis; 2005 Jul; 14(4):551-8. PubMed ID: 16116884
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spatio-temporal flow analysis in bileaflet heart valve hinge regions: potential analysis for blood element damage.
    Simon HA; Dasi LP; Leo HL; Yoganathan AP
    Ann Biomed Eng; 2007 Aug; 35(8):1333-46. PubMed ID: 17431789
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Velocity of closure of Björk-Shiley Convexo-Concave mitral valves: effect of mitral annulus orientation and rate of left ventricular pressure rise.
    Blick EF; Wieting DW; Inderbitzen R; Schreck S; Stein PD
    J Heart Valve Dis; 1995 Jul; 4 Suppl 1():S26-30; discussion S30-1. PubMed ID: 8581208
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of the driving condition of a pneumatic ventricular assist device on the cavitation intensity of the inlet and outlet mechanical heart valves.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2009; 55(4):328-34. PubMed ID: 19506466
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Scaling of mechanical heart valves for cavitation inception: observation and acoustic detection.
    Chahine GL
    J Heart Valve Dis; 1996 Mar; 5(2):207-14; discussion 214-5. PubMed ID: 8665016
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of dissolved carbon dioxide on cavitation intensity in mechanical heart valves.
    Herbertson LH; Manning KB; Reddy V; Fontaine AA; Tarbell JM; Deutsch S
    J Heart Valve Dis; 2005 Nov; 14(6):835-42. PubMed ID: 16363068
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of vortices in growth of microbubbles at mitral mechanical heart valve closure.
    Rambod E; Beizai M; Sahn DJ; Gharib M
    Ann Biomed Eng; 2007 Jul; 35(7):1131-45. PubMed ID: 17404890
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Using a CFD model to understand the fluid dynamics promoting E. coli breakage in a high-pressure homogenizer.
    Miller J; Rogowski M; Kelly W
    Biotechnol Prog; 2002; 18(5):1060-7. PubMed ID: 12363358
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pressure and flow fields in the hinge region of bileaflet mechanical heart valves.
    Gao ZB; Hosein N; Dai FF; Hwang NH
    J Heart Valve Dis; 1999 Mar; 8(2):197-205. PubMed ID: 10224581
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3-D simulation of the St. Jude Medical bileaflet valve opening process: fluid-structure interaction study and experimental validation.
    Redaelli A; Bothorel H; Votta E; Soncini M; Morbiducci U; Del Gaudio C; Balducci A; Grigioni M
    J Heart Valve Dis; 2004 Sep; 13(5):804-13. PubMed ID: 15473484
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of systolic duration on mechanical heart valve cavitation in a pneumatic ventricular assist device: using a monoleaflet valve.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2008; 54(1):25-30. PubMed ID: 18204312
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A protocol for the evaluation of the cavitation potential of mechanical heart valves.
    Herman BA; Carey RF
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S128-30; discussion S130-2. PubMed ID: 8061866
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vitro comparison of bileaflet aortic heart valve prostheses. St. Jude Medical, CarboMedics, modified Edwards-Duromedics, and Sorin-Bicarbon valves.
    Reul H; van Son JA; Steinseifer U; Schmitz B; Schmidt A; Schmitz C; Rau G
    J Thorac Cardiovasc Surg; 1993 Sep; 106(3):412-20. PubMed ID: 8361181
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Squeeze flow measurements in mechanical heart valves.
    Lo CW; Lu PC; Liu JS; Li CP; Hwang NH
    ASAIO J; 2008; 54(2):156-62. PubMed ID: 18356648
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fundamental mechanics of aortic heart valve closure.
    Hose DR; Narracott AJ; Penrose JM; Baguley D; Jones IP; Lawford PV
    J Biomech; 2006; 39(5):958-67. PubMed ID: 16488234
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transient pressure signals in mechanical heart valve cavitation.
    Wu ZJ; Slonin JH; Hwang NH
    ASAIO J; 1996; 42(5):M555-61. PubMed ID: 8944941
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model.
    Dumont K; Vierendeels J; Kaminsky R; van Nooten G; Verdonck P; Bluestein D
    J Biomech Eng; 2007 Aug; 129(4):558-65. PubMed ID: 17655477
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid-structure interaction approach.
    Nobili M; Morbiducci U; Ponzini R; Del Gaudio C; Balducci A; Grigioni M; Maria Montevecchi F; Redaelli A
    J Biomech; 2008 Aug; 41(11):2539-50. PubMed ID: 18579146
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An integrated macro/micro approach to evaluating pivot flow within the Medtronic ADVANTAGE bileaflet mechanical heart valve.
    Shu MC; Gross JM; O'Rourke KK; Yoganathan AP
    J Heart Valve Dis; 2003 Jul; 12(4):503-12. PubMed ID: 12918854
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cavitation Suppression of Bileaflet Mechanical Heart Valves.
    Qian JY; Gao ZX; Li WQ; Jin ZJ
    Cardiovasc Eng Technol; 2020 Dec; 11(6):783-794. PubMed ID: 32918244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.