These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 8061870)

  • 1. Causes and formation of cavitation in mechanical heart valves.
    Graf T; Reul H; Detlefs C; Wilmes R; Rau G
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S49-64. PubMed ID: 8061870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pressure field in the vicinity of mechanical valve occluders at the instant of valve closure: correlation with cavitation initiation.
    Chandran KB; Lee CS; Chen LD
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S65-75; discussion S75-6. PubMed ID: 8061871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of the cavitation potential of prosthetic heart valves based on valve closing dynamics.
    Zapanta CM; Stinebring DR; Deutsch S; Geselowitz DB; Tarbell JM
    J Heart Valve Dis; 1998 Nov; 7(6):655-67. PubMed ID: 9870200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro observations of mechanical heart valve cavitation.
    Shu MC; Leuer LH; Armitage TL; Schneider TE; Christiansen DR
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S85-92; discussion S92-3. PubMed ID: 8061874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occluder closing behavior: a key factor in mechanical heart valve cavitation.
    Wu ZJ; Wang Y; Hwang NH
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S25-33; discussion S33-4. PubMed ID: 8061868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of structural compliance on cavitation threshold measurement of mechanical heart valves.
    Guo GX; Adlparvar P; Howanec M; Roy J; Kafesjian R; Kingsbury C
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S77-83; discussion S83-4. PubMed ID: 8061872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bubble observation and transient pressure signals in mechanical heart valve cavitation study.
    Lijun X; Hock YJ; Hwang NH
    J Heart Valve Dis; 2003 Mar; 12(2):235-44. PubMed ID: 12701797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical valve closing dynamics: relationship between velocity of closing, pressure transients, and cavitation initiation.
    Chandran KB; Aluri S
    Ann Biomed Eng; 1997; 25(6):926-38. PubMed ID: 9395039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental-computational analysis of MHV cavitation: effects of leaflet squeezing and rebound.
    Makhijani VB; Yang HQ; Singhal AK; Hwang NH
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S35-44; discussion S44-8. PubMed ID: 8061869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitral heart valve cavitation in an artificial heart environment.
    Sneckenberger DS; Stinebring DR; Deutsch S; Geselowitz DB; Tarbell JM
    J Heart Valve Dis; 1996 Mar; 5(2):216-27. PubMed ID: 8665017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient pressure at closing of a monoleaflet mechanical heart valve prosthesis: mounting compliance effect.
    Wu ZJ; Gao BZ; Hwang NH
    J Heart Valve Dis; 1995 Sep; 4(5):553-67. PubMed ID: 8581200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in-vitro investigation of prosthetic heart valve cavitation in blood.
    Garrison LA; Lamson TC; Deutsch S; Geselowitz DB; Gaumond RP; Tarbell JM
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S8-22; discussion S22-4. PubMed ID: 8061873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asynchronous closure and leaflet impact velocity of bileaflet mechanical heart valves.
    Wu ZJ; Hwang NH
    J Heart Valve Dis; 1995 Jul; 4 Suppl 1():S38-49. PubMed ID: 8581210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of valve holder flexibility on cavitation initiation with mechanical heart valve prostheses: an in vitro study.
    Lee CS; Aluri S; Chandran KB
    J Heart Valve Dis; 1996 Jan; 5(1):104-13. PubMed ID: 8834733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of tip angle on cavitation potential during closure of a bileaflet prosthesis model.
    Zhang P; Yeo JH; Qian P; Hwang NH
    J Heart Valve Dis; 2007 Jul; 16(4):430-9. PubMed ID: 17702370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of cavitation bubbles in monoleaflet mechanical heart valves.
    Lee H; Tsukiya T; Homma A; Kamimura T; Takewa Y; Tatsumi E; Taenaka Y; Takano H; Kitamura S
    J Artif Organs; 2004; 7(3):121-7. PubMed ID: 15558332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of mechanical heart valve cavitation in a pneumatic ventricular assist device.
    Lee H; Taenaka Y
    Artif Organs; 2008 Jun; 32(6):453-60. PubMed ID: 18422801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic characteristics of bileaflet mechanical heart valves in an artificial heart: cavitation and closing velocity.
    Lee H; Homma A; Taenaka Y
    Artif Organs; 2007 Jul; 31(7):532-7. PubMed ID: 17584477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cavitation of mechanical heart valves under physiologic conditions.
    Graf T; Reul H; Dietz W; Wilmes R; Rau G
    J Heart Valve Dis; 1992 Sep; 1(1):131-41. PubMed ID: 1341216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the driving condition of a pneumatic ventricular assist device on the cavitation intensity of the inlet and outlet mechanical heart valves.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2009; 55(4):328-34. PubMed ID: 19506466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.