These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 8061874)
1. In vitro observations of mechanical heart valve cavitation. Shu MC; Leuer LH; Armitage TL; Schneider TE; Christiansen DR J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S85-92; discussion S92-3. PubMed ID: 8061874 [TBL] [Abstract][Full Text] [Related]
2. Effect of structural compliance on cavitation threshold measurement of mechanical heart valves. Guo GX; Adlparvar P; Howanec M; Roy J; Kafesjian R; Kingsbury C J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S77-83; discussion S83-4. PubMed ID: 8061872 [TBL] [Abstract][Full Text] [Related]
3. Pressure field in the vicinity of mechanical valve occluders at the instant of valve closure: correlation with cavitation initiation. Chandran KB; Lee CS; Chen LD J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S65-75; discussion S75-6. PubMed ID: 8061871 [TBL] [Abstract][Full Text] [Related]
12. Velocity of closure of Björk-Shiley Convexo-Concave mitral valves: effect of mitral annulus orientation and rate of left ventricular pressure rise. Blick EF; Wieting DW; Inderbitzen R; Schreck S; Stein PD J Heart Valve Dis; 1995 Jul; 4 Suppl 1():S26-30; discussion S30-1. PubMed ID: 8581208 [TBL] [Abstract][Full Text] [Related]
13. Mechanical valve closing dynamics: relationship between velocity of closing, pressure transients, and cavitation initiation. Chandran KB; Aluri S Ann Biomed Eng; 1997; 25(6):926-38. PubMed ID: 9395039 [TBL] [Abstract][Full Text] [Related]
14. A protocol for the evaluation of the cavitation potential of mechanical heart valves. Herman BA; Carey RF J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S128-30; discussion S130-2. PubMed ID: 8061866 [TBL] [Abstract][Full Text] [Related]
15. The effect of left ventricular dP/dt on the in vitro dynamics of the Björk-Shiley Convexo-Concave mitral valve. Rau G; Reul H; Eichler M; Schreck S; Wieting DW J Heart Valve Dis; 1995 Jul; 4 Suppl 1():S17-20. PubMed ID: 8581205 [TBL] [Abstract][Full Text] [Related]
16. Hydrodynamic characteristics of bileaflet mechanical heart valves in an artificial heart: cavitation and closing velocity. Lee H; Homma A; Taenaka Y Artif Organs; 2007 Jul; 31(7):532-7. PubMed ID: 17584477 [TBL] [Abstract][Full Text] [Related]
17. Effect of systolic duration on mechanical heart valve cavitation in a pneumatic ventricular assist device: using a monoleaflet valve. Lee H; Tatsumi E; Taenaka Y ASAIO J; 2008; 54(1):25-30. PubMed ID: 18204312 [TBL] [Abstract][Full Text] [Related]
18. Cavitation damage of pyrolytic carbon in mechanical heart valves. Kafesjian R; Howanec M; Ward GD; Diep L; Wagstaff LS; Rhee R J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S2-7. PubMed ID: 8061867 [TBL] [Abstract][Full Text] [Related]
19. Effects of the driving condition of a pneumatic ventricular assist device on the cavitation intensity of the inlet and outlet mechanical heart valves. Lee H; Tatsumi E; Taenaka Y ASAIO J; 2009; 55(4):328-34. PubMed ID: 19506466 [TBL] [Abstract][Full Text] [Related]
20. Closing behavior of the mechanical heart valve in a total artificial heart. Lee HS; Tsukiya T; Homma A; Taenaka Y; Tatsumi E; Takano H J Artif Organs; 2003; 6(1):37-41. PubMed ID: 14598123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]