These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8061938)

  • 1. The effects of verapamil on tetanic contractions of frog's skeletal muscle.
    Oz M; Frank GB
    Comp Biochem Physiol Pharmacol Toxicol Endocrinol; 1994 Mar; 107(3):321-9. PubMed ID: 8061938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decrease in the size of tetanic responses produced by nitrendipine or by extracellular calcium ion removal without blocking twitches or action potentials in skeletal muscle.
    Oz M; Frank GB
    J Pharmacol Exp Ther; 1991 May; 257(2):575-81. PubMed ID: 1903444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blockade of Ca2+ channels inhibits K+ contractures but not twitches in skeletal muscle.
    Frank GB
    Can J Physiol Pharmacol; 1984 Apr; 62(4):374-8. PubMed ID: 6610466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TMB-8 can block twitches without blocking high K+ or caffeine induced contractures in frog's skeletal muscle.
    Shetty SS; Rizvi SS; Frank GB
    Life Sci; 1986 Sep; 39(13):1137-41. PubMed ID: 3489151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dihydropyridine calcium channel antagonists block and agonists potentiate high potassium contractures but not twitches in frog skeletal muscle.
    Frank GB
    Jpn J Physiol; 1990; 40(2):205-24. PubMed ID: 1697633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the calcium channel agonist, Bay K 8644, on the mechanical output of skeletal muscle fibers.
    Williams JH; Ward CW
    Gen Pharmacol; 1991; 22(4):735-40. PubMed ID: 1718813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the calcium channel agonist Bay K8644 on mechanical and electrical responses of frog skeletal muscle.
    Oz M; Frank GB
    Can J Physiol Pharmacol; 1994 Oct; 72(10):1220-5. PubMed ID: 7533650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs.
    Narita K; Kawasaki F; Kita H
    Brain Res; 1990 Mar; 510(2):289-95. PubMed ID: 2158851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency-dependent effects of Bay K 8644 on tetanic contractions of frog skeletal muscle.
    Oz M; Frank GB
    Gen Pharmacol; 1997 Jan; 28(1):99-103. PubMed ID: 9112084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the calcium antagonists bepridil (CERM-1978) and verapamil on Ca++-dependent slow action potentials in frog skeletal muscle.
    Kerr LM; Sperelakis N
    J Pharmacol Exp Ther; 1982 Jul; 222(1):80-6. PubMed ID: 6979625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects.
    Radzyukevich T; Lipská E; Pavelková J; Zacharová D
    Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of K+ on the twitch and tetanic contraction in the sartorius muscle of the frog, Rana pipiens. Implication for fatigue in vivo.
    Renaud JM; Light P
    Can J Physiol Pharmacol; 1992 Sep; 70(9):1236-46. PubMed ID: 1493591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different effects of verapamil and low calcium on repetitive contractile activity of frog fatigue-resistant and easily-fatigued muscle fibres.
    Lipská E; Radzyukevich T
    Gen Physiol Biophys; 1999 Jun; 18(2):139-53. PubMed ID: 10517289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of contractile responses by some calcium antagonists on external calcium in the skeletal muscle.
    Kawata H; Hatae J
    Jpn J Physiol; 1990; 40(3):337-50. PubMed ID: 2273634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of (+) and (-) enantiomers of calcium channel agonist, Bay K 8644, on mechanical and electrical responses of frog skeletal muscle.
    Oz M; Tchugunova Y; Dinç M
    Can J Physiol Pharmacol; 2000 Aug; 78(8):649-55. PubMed ID: 10958166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of deuterium oxide on calcium transients and myofibrillar responses of frog skeletal muscle.
    Allen DG; Blinks JR; Godt RE
    J Physiol; 1984 Sep; 354():225-51. PubMed ID: 6090648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co2+, low Ca2+, and verapamil reduce mechanical activity in rat skeletal muscles.
    Kotsias BA; Muchnik S; Obejero Paz CA
    Am J Physiol; 1986 Jan; 250(1 Pt 1):C40-6. PubMed ID: 3942207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of the phenylalkylamine D888 (devapamil) on force and Ca2+ current in isolated frog skeletal muscle fibres.
    Erdmann R; Lüttgau HC
    J Physiol; 1989 Jun; 413():521-41. PubMed ID: 2557440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of glibenclamide on frog skeletal muscle: evidence for K+ATP channel activation during fatigue.
    Light PE; Comtois AS; Renaud JM
    J Physiol; 1994 Mar; 475(3):495-507. PubMed ID: 8006831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholinergic neuromuscular transmission in the longitudinal muscle of the guinea-pig ileum.
    Cousins HM; Edwards FR; Hirst GD; Wendt IR
    J Physiol; 1993 Nov; 471():61-86. PubMed ID: 8120825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.