These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 8061938)

  • 21. Ketamine: effects on the mechanical properties of the frog sartorius muscle.
    Rydqvist B; Faijerson B
    Acta Anaesthesiol Scand; 1983 Feb; 27(1):68-71. PubMed ID: 6601349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Verapamil and zero Ca2+ alter responses of cat muscle to halothane and caffeine.
    Deuster PA; Bockman EL; Biscardi H; Muldoon SM
    J Appl Physiol (1985); 1986 Mar; 60(3):935-41. PubMed ID: 3957844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of the "calcium-antagonist" verapamil on muscle action potentials in the frog and crayfish and on neuromuscular transmission in the crayfish.
    Van Der Kloot W; Kita H
    Comp Biochem Physiol C Comp Pharmacol; 1975 Jan; 50(1):121-5. PubMed ID: 240613
    [No Abstract]   [Full Text] [Related]  

  • 24. Two mechanisms for the meperidine block of action potential production in frog's skeletal muscle; non-specific and opiate drug receptor mediated blockade.
    Frank GB
    J Physiol; 1975 Nov; 252(3):585-601. PubMed ID: 1082025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of catecholamines and cyclic amp on excitation--contraction coupling in isolated skeletal muscle fibres of the frog.
    Gonzalez-Serratos H; Hill L; Valle-Aguilera R
    J Physiol; 1981 Jun; 315():267-82. PubMed ID: 6273540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of cell calcium and contractility in mammalian arterial smooth muscle: the role of sodium-calcium exchange.
    Ashida T; Blaustein MP
    J Physiol; 1987 Nov; 392():617-35. PubMed ID: 2451733
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Twitch potentiation of frog (Rana japonica) skeletal muscle by antipyrine.
    Fujishiro N; Kawata H
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1989; 92(1):61-5. PubMed ID: 2566446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use-dependent action of antiarrhythmic drugs in frog skeletal muscle and canine cardiac Purkinje fiber.
    Nánási PP; Varró A; Lathrop DA; Dankó M
    Gen Pharmacol; 1990; 21(5):747-51. PubMed ID: 2276592
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pharmacological studies of excitation-contraction coupling in skeletal muscle.
    Frank GB
    Can J Physiol Pharmacol; 1987 Apr; 65(4):711-6. PubMed ID: 2440545
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of the calcium channel facilitator, CGP 28,392, on different modes of contraction in smooth muscle of rabbit and rat aortae and guinea-pig taenia caeci.
    Karaki H; Nagase H; Ozaki H; Urakawa N; Weiss GB
    Br J Pharmacol; 1986 Oct; 89(2):423-9. PubMed ID: 3779218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of verapamil and Ca free solution on mechanical and electrical properties in fast twitch mammalian skeletal muscle.
    Delbono O; Obejero Paz CA; Muchnik S
    Acta Physiol Pharmacol Latinoam; 1987; 37(4):423-35. PubMed ID: 3274022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A pharmacological explanation of the use-dependency of the verapamil (and D-600) block of slow calcium channels.
    Frank GB
    J Pharmacol Exp Ther; 1986 Feb; 236(2):505-11. PubMed ID: 2418198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reappraisal of the role of sodium ions in excitation-contraction coupling in frog twitch muscle.
    Allard B; Rougier O
    J Muscle Res Cell Motil; 1992 Feb; 13(1):117-25. PubMed ID: 1556167
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin.
    Blinks JR; Rüdel R; Taylor SR
    J Physiol; 1978 Apr; 277():291-323. PubMed ID: 306438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Blocking ATP-sensitive K+ channel during metabolic inhibition impairs muscle contractility.
    Gramolini A; Renaud JM
    Am J Physiol; 1997 Jun; 272(6 Pt 1):C1936-46. PubMed ID: 9227423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targets for calcium channel blockers in mammalian skeletal muscle and their respective functions in excitation-contraction coupling.
    Romey G; Garcia L; Rieger F; Lazdunski M
    Biochem Biophys Res Commun; 1988 Nov; 156(3):1324-32. PubMed ID: 2847731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use-dependent block of sodium channels by verapamil in skeletal muscle during repetitive stimulation.
    Frank GB; Oz M
    Proc West Pharmacol Soc; 1991; 34():409-12. PubMed ID: 1664961
    [No Abstract]   [Full Text] [Related]  

  • 38. Aminophylline enhances contractility of frog skeletal muscle: an effect dependent on extracellular calcium.
    Ridings JW; Barry SR; Faulkner JA
    J Appl Physiol (1985); 1989 Aug; 67(2):671-6. PubMed ID: 2793668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of verapamil on excitation-contraction coupling in frog sartorius muscle.
    Bondi AY
    J Pharmacol Exp Ther; 1978 Apr; 205(1):49-57. PubMed ID: 24733
    [No Abstract]   [Full Text] [Related]  

  • 40. Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase.
    Sculptoreanu A; Scheuer T; Catterall WA
    Nature; 1993 Jul; 364(6434):240-3. PubMed ID: 8391648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.