These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 8061958)

  • 1. Superoxide dismutase, catalase and cell dimorphism in Candida albicans cells exposed to methanol and different temperatures.
    Romandini P; Bonotto C; Bertoloni G; Beltramini M; Salvato B
    Comp Biochem Physiol Pharmacol Toxicol Endocrinol; 1994 May; 108(1):53-7. PubMed ID: 8061958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of superoxide dismutase by methanol and structural modifications in Candida albicans.
    Paganelli M; Romandini P; Bertoloni G; Beltramini M; Tallandini L; Salvato B
    Yeast; 1989 Apr; 5 Spec No():S431-5. PubMed ID: 2665371
    [No Abstract]   [Full Text] [Related]  

  • 3. Fluconazole and amphotericin-B resistance are associated with increased catalase and superoxide dismutase activity in Candida albicans and Candida dubliniensis.
    Linares CE; Giacomelli SR; Altenhofen D; Alves SH; Morsch VM; Schetinger MR
    Rev Soc Bras Med Trop; 2013; 46(6):752-8. PubMed ID: 24474018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of superoxide dismutase synthesis in Candida albicans.
    Gunasekaran U; Yang R; Gunasekaran M
    Mycopathologia; 1998; 141(2):59-63. PubMed ID: 9750335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide dismutase during glucose repression of Hansenula polymorpha CBS 4732.
    Hristozova T; Rasheva T; Nedeva T; Kujumdzieva A
    Z Naturforsch C J Biosci; 2002; 57(3-4):313-8. PubMed ID: 12064733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of antioxidant enzymatic defences against oxidative stress H(2)O(2) and the acquisition of oxidative tolerance in Candida albicans.
    González-Párraga P; Hernández JA; Argüelles JC
    Yeast; 2003 Oct; 20(14):1161-9. PubMed ID: 14587100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochrome c peroxidase regulates intracellular reactive oxygen species and methylglyoxal via enzyme activities of erythroascorbate peroxidase and glutathione-related enzymes in Candida albicans.
    Shin Y; Lee S; Ku M; Kwak MK; Kang SO
    Int J Biochem Cell Biol; 2017 Nov; 92():183-201. PubMed ID: 29031807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of peroxisome proliferation and increase of catalase activity in yeast, Candida albicans, by cadmium.
    Chen T; Li W; Schulz PJ; Furst A; Chien PK
    Biol Trace Elem Res; 1995 Nov; 50(2):125-33. PubMed ID: 8605080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper adaptation and methylotrophic metabolism in Candida boidinii.
    Santovito G; Salvato B; Manzano M; Beltramini M
    Yeast; 2002 May; 19(7):631-40. PubMed ID: 11967833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for Candida albicans superoxide dismutase enzymes in glucose signaling.
    Broxton CN; He B; Bruno VM; Culotta VC
    Biochem Biophys Res Commun; 2018 Jan; 495(1):814-820. PubMed ID: 29154829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive tolerance to oxidative stress and the induction of antioxidant enzymatic activities in Candida albicans are independent of the Hog1 and Cap1-mediated pathways.
    Gónzalez-Párraga P; Alonso-Monge R; Plá J; Argüelles JC
    FEMS Yeast Res; 2010 Sep; 10(6):747-56. PubMed ID: 20608985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amphotericin B-induced oxidative damage and killing of Candida albicans.
    Sokol-Anderson ML; Brajtburg J; Medoff G
    J Infect Dis; 1986 Jul; 154(1):76-83. PubMed ID: 3519792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Adaptation to Low Copper in Candida albicans Involving SOD Enzymes and the Alternative Oxidase.
    Broxton CN; Culotta VC
    PLoS One; 2016; 11(12):e0168400. PubMed ID: 28033429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of oxygen and substrates for growth on the superoxide dismutase and catalase activity of microorganisms].
    Kulakova SM; Gogotov IN
    Mikrobiologiia; 1982; 51(1):21-6. PubMed ID: 6803110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial assimilation of methanol induction and function of catalase in Candida boidinii.
    Roggenkamp R; Sahm H; Wagner F
    FEBS Lett; 1974 May; 41(2):283-6. PubMed ID: 4853207
    [No Abstract]   [Full Text] [Related]  

  • 16. Interaction among heavy metals and methanol affecting superoxide dismutase activity in Saccharomyces cerevisiae.
    Manzano M; Romandini P; de Bertoldi M; Beltramini M; Salvato B; Cozzani I
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1993 Jun; 105(2):175-8. PubMed ID: 8103726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of some factors on the dimorphism of Candida albicans.
    Vidotto V; Picerno G; Caramello S; Paniate G
    Mycopathologia; 1988 Dec; 104(3):129-35. PubMed ID: 3070383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of diallyldisulphide on an antioxidant enzyme system in Candida species.
    Yousuf S; Ahmad A; Khan A; Manzoor N; Khan LA
    Can J Microbiol; 2010 Oct; 56(10):816-21. PubMed ID: 20962904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutathione protects Candida albicans against horseradish volatile oil.
    Bertóti R; Vasas G; Gonda S; Nguyen NM; Szőke É; Jakab Á; Pócsi I; Emri T
    J Basic Microbiol; 2016 Oct; 56(10):1071-1079. PubMed ID: 27272511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalase activity in Candida albicans exposed to antineoplastic drugs.
    Linares CEB; Griebeler D; Cargnelutti D; Alves SH; Morsch VM; Schetinger MRC
    J Med Microbiol; 2006 Mar; 55(Pt 3):259-262. PubMed ID: 16476788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.