BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8062425)

  • 1. Immunohistochemical identification of arteriolar development using markers of smooth muscle differentiation. Evidence that capillary arterialization proceeds from terminal arterioles.
    Price RJ; Owens GK; Skalak TC
    Circ Res; 1994 Sep; 75(3):520-7. PubMed ID: 8062425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic alpha 1-adrenergic blockade stimulates terminal and arcade arteriolar development.
    Price RJ; Skalak TC
    Am J Physiol; 1996 Aug; 271(2 Pt 2):H752-9. PubMed ID: 8770119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of arterioles in chronically stimulated adult rat skeletal muscle.
    Hansen-Smith F; Egginton S; Hudlicka O
    Microcirculation; 1998; 5(1):49-59. PubMed ID: 9702722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of cellular proliferation in skeletal muscle transverse arterioles during maturation.
    Price RJ; Skalak TC
    Microcirculation; 1998; 5(1):39-47. PubMed ID: 9702721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential arterial/venous expression of NG2 proteoglycan in perivascular cells along microvessels: identifying a venule-specific phenotype.
    Murfee WL; Skalak TC; Peirce SM
    Microcirculation; 2005 Mar; 12(2):151-60. PubMed ID: 15824037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arteriolar remodeling in skeletal muscle of rats exposed to chronic hypoxia.
    Price RJ; Skalak TC
    J Vasc Res; 1998; 35(4):238-44. PubMed ID: 9701707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced smooth muscle cell coverage of microvessels exposed to increased hemodynamic stresses in vivo.
    Van Gieson EJ; Murfee WL; Skalak TC; Price RJ
    Circ Res; 2003 May; 92(8):929-36. PubMed ID: 12663481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity and variability of smooth muscle phenotypes of renal arterioles as revealed by myosin isoform expression.
    Kimura K; Nagai R; Sakai T; Aikawa M; Kuro-o M; Kobayashi N; Shirato I; Inagami T; Oshi M; Suzuki N
    Kidney Int; 1995 Aug; 48(2):372-82. PubMed ID: 7564104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillary arterialization requires the bone-marrow-derived cell (BMC)-specific expression of chemokine (C-C motif) receptor-2, but BMCs do not transdifferentiate into microvascular smooth muscle.
    Nickerson MM; Burke CW; Meisner JK; Shuptrine CW; Song J; Price RJ
    Angiogenesis; 2009; 12(4):355-63. PubMed ID: 19777360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prazosin administration enhances proliferation of arteriolar adventitial fibroblasts.
    Price RJ; Skalak TC
    Microvasc Res; 1998 Mar; 55(2):138-45. PubMed ID: 9521888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between the distribution of smooth muscle or non muscle myosins and alpha-smooth muscle actin in normal and pathological soft tissues.
    Benzonana G; Skalli O; Gabbiani G
    Cell Motil Cytoskeleton; 1988; 11(4):260-74. PubMed ID: 3064925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous contraction of pseudoglandular-stage human airspaces is associated with the presence of smooth muscle-alpha-actin and smooth muscle-specific myosin heavy chain in recently differentiated fetal human airway smooth muscle.
    Pandya HC; Innes J; Hodge R; Bustani P; Silverman M; Kotecha S
    Biol Neonate; 2006; 89(4):211-9. PubMed ID: 16293963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arteriolar network growth in rat striated muscle during juvenile maturation.
    Linderman JR; Boegehold MA
    Int J Microcirc Clin Exp; 1996; 16(5):232-9. PubMed ID: 8951521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth of arterioles precedes that of capillaries in stretch-induced angiogenesis in skeletal muscle.
    Hansen-Smith F; Egginton S; Zhou AL; Hudlicka O
    Microvasc Res; 2001 Jul; 62(1):1-14. PubMed ID: 11421656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and functional analyses of the contractile apparatus in lymphatic muscle.
    Muthuchamy M; Gashev A; Boswell N; Dawson N; Zawieja D
    FASEB J; 2003 May; 17(8):920-2. PubMed ID: 12670880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of vasomotion of arterioles and capillaries in the cat spinal cord: role of alpha actin and endothelin-1.
    Toribatake Y; Tomita K; Kawahara N; Baba H; Ohnari H; Tanaka S
    Spinal Cord; 1997 Jan; 35(1):26-32. PubMed ID: 9025216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The microvasculature in skeletal muscle. VI. Adrenergic innervation of arterioles in normotensive and spontaneously hypertensive rats.
    Saltzman D; DeLano FA; Schmid-Schönbein GW
    Microvasc Res; 1992 Nov; 44(3):263-73. PubMed ID: 1479927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myofibroblast-derived smooth muscle cells during remodelling of rabbit urinary bladder wall induced by partial outflow obstruction.
    Buoro S; Ferrarese P; Chiavegato A; Roelofs M; Scatena M; Pauletto P; Passerini-Glazel G; Pagano F; Sartore S
    Lab Invest; 1993 Nov; 69(5):589-602. PubMed ID: 8246451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microvascular blood flow distribution in skeletal muscle. An intravital microscopic study in the rabbit.
    Lindbom L
    Acta Physiol Scand Suppl; 1983; 525():1-40. PubMed ID: 6588730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platelet-derived growth factor-BB-induced suppression of smooth muscle cell differentiation.
    Holycross BJ; Blank RS; Thompson MM; Peach MJ; Owens GK
    Circ Res; 1992 Dec; 71(6):1525-32. PubMed ID: 1423945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.