BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 806252)

  • 1. Oxygenase-catalyzed biological hydroxylations.
    Gunsalus IC; Pederson TC; Sligar SG
    Annu Rev Biochem; 1975; 44():377-407. PubMed ID: 806252
    [No Abstract]   [Full Text] [Related]  

  • 2. Investigations of the utilization of NADPH for steroid hydroxylations by adrenal cortex mitochondrial enzymes.
    Wickramasinghe RH
    Steroids Lipids Res; 1973; 4(3):143-52. PubMed ID: 4149672
    [No Abstract]   [Full Text] [Related]  

  • 3. Effects of linoleic acid hydroperoxide on the hepatic monooxygenase systems of microsomes from untreated, phenobarbital-treated, and 3-methylcholanthrene-treated rats.
    Jeffery E; Kotake A; Azhary RE
    Mol Pharmacol; 1977 May; 13(3):415-25. PubMed ID: 406515
    [No Abstract]   [Full Text] [Related]  

  • 4. The liver microsomal hydroxylation enzyme system. Induction and properties of the functional components.
    Lu AY; Kuntzman R; Conney AH
    Front Gastrointest Res; 1976; 2():1-31. PubMed ID: 819342
    [No Abstract]   [Full Text] [Related]  

  • 5. Purification and reconstitution of the electron transport components for 6-deoxyerythronolide B hydroxylase, a cytochrome P-450 enzyme of macrolide antibiotic (erythromycin) biosynthesis.
    Shafiee A; Hutchinson CR
    J Bacteriol; 1988 Apr; 170(4):1548-53. PubMed ID: 3127376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain.
    Murataliev MB; Feyereisen R
    Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eelctron transport system for adrenocortical mitochondrial steroid hydroxylation reactions: the mechanism of the hydroxylation reactions and properties of the flavoprotein-iron-sulfur protein complex.
    Kimura T; Nakamura S; Huang JJ; Chu JW; Wang HP; Tsernoglou D
    Ann N Y Acad Sci; 1973; 212():94-106. PubMed ID: 4155932
    [No Abstract]   [Full Text] [Related]  

  • 8. Inherent specificities of purified cytochromes P-450 and P-448 toward biphenyl hydroxylation and ethoxyresorufin deethylation.
    Burke MD; Mayer RT
    Drug Metab Dispos; 1975; 3(4):245-53. PubMed ID: 240653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the stimulation of nadph-cytochrome P-450 reductase activity in hepatic, microsomal mixed function oxidase activity.
    Holtzman JL
    Pharmacol Ther B; 1979; 4(3):601-27. PubMed ID: 224402
    [No Abstract]   [Full Text] [Related]  

  • 10. Influence of glutathione on the catalytic activity of reconstituted cytochrome P450 3A4.
    Kim BR; Kim DH
    Biochem Biophys Res Commun; 1998 Jan; 242(1):209-12. PubMed ID: 9439637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes.
    Yamazaki H; Nakano M; Imai Y; Ueng YF; Guengerich FP; Shimada T
    Arch Biochem Biophys; 1996 Jan; 325(2):174-82. PubMed ID: 8561495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heme catabolism by the reconstituted heme oxygenase system.
    Kikuchi G; Yoshida T
    Ann Clin Res; 1976; 8 Suppl 17():10-7. PubMed ID: 827230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid hydroxylase of the fungus Fusarium oxysporum is possibly a fused protein of cytochrome P-450 and its reductase.
    Nakayama N; Shoun H
    Biochem Biophys Res Commun; 1994 Jul; 202(1):586-90. PubMed ID: 8037765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of vinyl chloride: destruction of the heme of highly purified liver Microsomal cytochrome P-450 by a metabolite.
    Guengerich FP; Strickland TW
    Mol Pharmacol; 1977 Nov; 13(6):993-1004. PubMed ID: 413029
    [No Abstract]   [Full Text] [Related]  

  • 15. The organization and interaction of monoxygenase enzymes in the microsomal membrane.
    Yang CS
    Life Sci; 1977 Oct; 21(8):1047-57. PubMed ID: 411001
    [No Abstract]   [Full Text] [Related]  

  • 16. Role of cytochromes P-450 and flavin-containing monooxygenase in the biotransformation of 4-fluoro-N-methylaniline.
    Boersma MG; Cnubben NH; van Berkel WJ; Blom M; Vervoort J; Rietjens IM
    Drug Metab Dispos; 1993; 21(2):218-30. PubMed ID: 8097689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Reconstruction of the liver microsomal monooxygenase system in a solution from NADP-H-cytochrome P-450 reductase and cytochrome P-450 monomers].
    Skotselias ED; Kanaeva IP; Dzhuzenova ChS; Gordeev SA; Kariakin AV
    Dokl Akad Nauk SSSR; 1987; 293(3):748-51. PubMed ID: 3107957
    [No Abstract]   [Full Text] [Related]  

  • 18. Biochemical characterization of lauric acid omega-hydroxylation by a CYP4A1/NADPH-cytochrome P450 reductase fusion protein.
    Chaurasia CS; Alterman MA; Lu P; Hanzlik RP
    Arch Biochem Biophys; 1995 Feb; 317(1):161-9. PubMed ID: 7872779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of 6 alpha-hydroxylation of taurochenodeoxycholic acid in pig liver.
    Boström H
    J Lipid Res; 1986 Aug; 27(8):807-12. PubMed ID: 3095476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.