These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8062549)

  • 1. A Monte Carlo program for the calculation of contrast, noise and absorbed dose in diagnostic radiology.
    Sandborg M; Dance DR; Persliden J; Carlsson GA
    Comput Methods Programs Biomed; 1994 Mar; 42(3):167-80. PubMed ID: 8062549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo study of grid performance in diagnostic radiology: factors which affect the selection of tube potential and grid ratio.
    Sandborg M; Dance DR; Carlsson GA; Persliden J
    Br J Radiol; 1993 Dec; 66(792):1164-76. PubMed ID: 8293262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The impact of X-ray scatter correction software on abdomen radiography in terms of image quality and radiation dose.
    Sayed M; Knapp KM; Fulford J; Heales C; Alqahtani SJ
    Radiography (Lond); 2024 Jul; 30(4):1125-1135. PubMed ID: 38797045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of anti-scatter grids for different imaging tasks: the advantage of low atomic number cover and interspace materials.
    Sandborg M; Dance DR; Carlsson GA; Persliden J
    Br J Radiol; 1993 Dec; 66(792):1151-63. PubMed ID: 8293261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Monte Carlo study of grid performance in diagnostic radiology: task-dependent optimization for digital imaging.
    Sandborg M; Dance DR; Carlsson GA; Persliden J; Tapiovaara MJ
    Phys Med Biol; 1994 Oct; 39(10):1659-76. PubMed ID: 15551537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo study of grid performance in diagnostic radiology: task dependent optimization for screen-film imaging.
    Sandborg M; Dance DR; Carlsson GA; Persliden J
    Br J Radiol; 1994 Jan; 67(793):76-85. PubMed ID: 8298879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.
    Alnewaini Z; Langer E; Schaber P; David M; Kretz D; Steil V; Hesser J
    J Appl Clin Med Phys; 2017 Mar; 18(2):144-153. PubMed ID: 28300387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distributions of scatter-to-primary and signal-to-noise ratios per pixel in digital chest imaging.
    Ullman G; Sandborg M; Dance DR; Hunt R; Alm Carlsson G
    Radiat Prot Dosimetry; 2005; 114(1-3):355-8. PubMed ID: 15933136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of scatter-to-primary ratio, grid performance and normalized average glandular dose in mammography by Monte Carlo simulation including interference and energy broadening effects.
    Cunha DM; Tomal A; Poletti ME
    Phys Med Biol; 2010 Aug; 55(15):4335-59. PubMed ID: 20647608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A new method for eliminating scatter components from a digital X-ray image by later processing].
    Kato H
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2006 Sep; 62(9):1359-68. PubMed ID: 17013372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter - Part I: Core algorithms and validation.
    Maslowski A; Wang A; Sun M; Wareing T; Davis I; Star-Lack J
    Med Phys; 2018 May; 45(5):1899-1913. PubMed ID: 29509970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo analysis of beam blocking grid design parameters: Scatter estimation and the importance of electron backscatter.
    Bootsma GJ; Ren L; Zhang H; Jin JY; Jaffray DA
    Med Phys; 2018 Mar; 45(3):1059-1070. PubMed ID: 29360154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of different computational models for generation of x-ray spectra in diagnostic radiology and mammography.
    Ay MR; Sarkar S; Shahriari M; Sardari D; Zaidi H
    Med Phys; 2005 Jun; 32(6):1660-75. PubMed ID: 16013725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-energy imaging with high-energy bremsstrahlung beams: analysis and scatter reduction.
    Mah DW; Galbraith DM; Rawlinson JA
    Med Phys; 1993; 20(3):653-65. PubMed ID: 8350817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation dose in diagnostic radiology: Monte Carlo simulation studies.
    Chan HP; Doi K
    Med Phys; 1984; 11(4):480-90. PubMed ID: 6482844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of performance of antiscatter grids in digital radiography: effect on signal-to-noise ratio.
    Chan HP; Lam KL; Wu YZ
    Med Phys; 1990; 17(4):655-64. PubMed ID: 2215411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of scatter in digital mammography from use of Monte Carlo simulations and comparison to physical measurements.
    Leon SM; Brateman LF; Wagner LK
    Med Phys; 2014 Nov; 41(11):111914. PubMed ID: 25370647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully iterative scatter corrected digital breast tomosynthesis using GPU-based fast Monte Carlo simulation and composition ratio update.
    Kim K; Lee T; Seong Y; Lee J; Jang KE; Choi J; Choi YW; Kim HH; Shin HJ; Cha JH; Cho S; Ye JC
    Med Phys; 2015 Sep; 42(9):5342-55. PubMed ID: 26328983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of scattered radiation in kV CBCT images using Monte Carlo simulations.
    Jarry G; Graham SA; Moseley DJ; Jaffray DJ; Siewerdsen JH; Verhaegen F
    Med Phys; 2006 Nov; 33(11):4320-9. PubMed ID: 17153411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A search for improved technique factors in paediatric fluoroscopy.
    Tapiovaara MJ; Sandborg M; Dance DR
    Phys Med Biol; 1999 Feb; 44(2):537-59. PubMed ID: 10070800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.