These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 806303)

  • 21. Kinetic properties of a phosphate-bond-driven glutamate-glutamine transport system in Streptococcus lactis and Streptococcus cremoris.
    Poolman B; Smid EJ; Konings WN
    J Bacteriol; 1987 Jun; 169(6):2755-61. PubMed ID: 3584068
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of glutamate uptake systems in astrocyte primary cultures from rat brain.
    Flott B; Seifert W
    Glia; 1991; 4(3):293-304. PubMed ID: 1716608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterogeneity of sodium-dependent excitatory amino acid uptake mechanisms in rat brain.
    Ferkany J; Coyle JT
    J Neurosci Res; 1986; 16(3):491-503. PubMed ID: 2877096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characteristics of dicarboxylic amino acid transport by rabbit intestinal brush-border membrane vesicles.
    Nutr Rev; 1985 Jan; 43(1):30-2. PubMed ID: 3885083
    [No Abstract]   [Full Text] [Related]  

  • 25. A multicomponent analysis of amino acid transport systems in human lymphocytes. 1. Kinetic parameters of the A and L systems and pathways of uptake of naturally occurring amino acids in blood lymphocytes.
    Segel GB; Simon W; Lichtman MA
    J Cell Physiol; 1983 Sep; 116(3):372-8. PubMed ID: 6604062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparative study on the transport of L(-)malic acid and other short-chain carboxylic acids in the yeast Candida utilis: evidence for a general organic acid permease.
    Cássio F; Leão C
    Yeast; 1993 Jul; 9(7):743-52. PubMed ID: 8368008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The characteristics of peptide uptake in Streptococcus faecalis: studies on the transport of natural peptides and antibacterial phosphonopeptides.
    Nisbet TM; Payne JW
    J Gen Microbiol; 1982 Jun; 128(6):1357-64. PubMed ID: 6811693
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accumulation of freely extractable glutamic acid by lactic acid bacteria.
    HOLDEN JT; HOLMAN J
    J Biol Chem; 1959 Apr; 234(4):865-71. PubMed ID: 13654279
    [No Abstract]   [Full Text] [Related]  

  • 29. Uptake and utilization of glutamic acid by Cryptococcus albidus.
    Tang SL; Howard DH
    J Bacteriol; 1973 Jul; 115(1):98-106. PubMed ID: 4717525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A pump-pore model for transmembrane transport of hydrophilic solutes.
    Roberts E
    Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7456-60. PubMed ID: 8102798
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characteristics of acidic, basic and neutral amino acid transport in the perfused rat hindlimb.
    Hundal HS; Rennie MJ; Watt PW
    J Physiol; 1989 Jan; 408():93-114. PubMed ID: 2506342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Asparagine transport in Lactobacillus plantarum and Streptococcus faecalis.
    Holden JT; Bunch JM
    Biochim Biophys Acta; 1973 May; 307(3):640-55. PubMed ID: 4198088
    [No Abstract]   [Full Text] [Related]  

  • 33. Na(+)-dependent glutamate transporter in human retinal pigment epithelial cells.
    Miyamoto Y; Del Monte MA
    Invest Ophthalmol Vis Sci; 1994 Sep; 35(10):3589-98. PubMed ID: 7916336
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport.
    Poolman B; Konings WN
    J Bacteriol; 1988 Feb; 170(2):700-7. PubMed ID: 3123462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mediated Na(+)-independent transport of L-glutamate and L-cystine in 1- and 2-cell mouse conceptuses.
    Van Winkle LJ; Mann DF; Wasserlauf HG; Patel M
    Biochim Biophys Acta; 1992 Jun; 1107(2):299-304. PubMed ID: 1354486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of arsenate with phosphate-transport systems in wild- type and mutant Streptococcus faecalis.
    Harold FM; Baarda JR
    J Bacteriol; 1966 Jun; 91(6):2257-62. PubMed ID: 4957614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport of L-glutamine and L-glutamate across sinusoidal membranes of rat liver. Effects of starvation, diabetes and corticosteroid treatment.
    Low SY; Taylor PM; Hundal HS; Pogson CI; Rennie MJ
    Biochem J; 1992 Jun; 284 ( Pt 2)(Pt 2):333-40. PubMed ID: 1350902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glutamic acid is an active site residue of angiotensin I-converting enzyme. Use of the Lossen rearrangement for identification of dicarboxylic acid residues.
    Harris RB; Wilson IB
    J Biol Chem; 1983 Jan; 258(2):1357-62. PubMed ID: 6130087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A quantitative histochemical approach to renal transport. I. Aspartate and glutamate.
    Chan AW; Burch HB; Alvey TR; Lowry OH
    Am J Physiol; 1975 Oct; 229(4):1034-44. PubMed ID: 1190315
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uptake of 14C-labeled dicarboxylic amino acids in hepatocytes and hepatoma cells.
    Koch MR; Lea MA
    Cancer Res; 1981 Aug; 41(8):3065-70. PubMed ID: 7248963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.